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GRAPH THEORY
(MTH418)

MERIAM MKADMI



Groghs
L CJ(“‘P\’\" mode wp oF se¥ oF verkices ond

sey o eAa‘SU» 6= %V\/ E-é
Lo Verkices oxe \oom’vs- N\

V=§vin ik v / N\

Ly EA?}@S e \ine segww/\’vs Yhot conneck
2 vexfices .
E= 5 Vviva, VimVs§
Ly || s mazmixirvb - how many elements
W the set.
vl=2 |El=2

This comrse will Fows on wdwecked sywple
ﬂmphs. '
Ly Undirecked . no direcrion or axrow
V\"Vz = Vo=V,



Ly Simple t berweon L vertices, there s
- oF wosk 4 edge. there ove

no cu‘sc\ezs / \oops .

AR

NOT SIMPLE NOT SIMPLE SIMPLE

L Deayee = nwmber of edqes connected ‘o

o Verkex.
Example -
. v
Ve Vo
Va v
Vy
Ve,

Q. Fvd ¥he Ae%me ok eoclh verlex .



A. ciecs(\l\\z 3
dec:) (N9 = o&e%b/g\ =2

ACO) (v2) = 4
Ae?) (Vo) = deg(vu)= Ae.s(\!vf\ =\

Remoxic: | =, deqrees = 2\E\

Proof: eocwh edqe is counted twice when
co.\cvt\a\-\mﬁ all Ae%vwa of Vertices.

Remork: o rap\n musx have on even
number of verkices with odd

dearees -
v

?roo?: Z,Ae%m% = 2\\_:;\

Lek O = se¥ of o\l verticer with odd &%m
Let N= ser of o\l ver¥ices with even &3%

2&3(_\13 A Vze_:l\e%(\l\ = 2&,3 QD)

VEQ
e\lMl —~J
becounse eNem
s O

even



So this meons 2&3‘-"3 musk be even,
VEQ

ond conseo\'um\-\%, 10\ = an even ivx\—eosex.

LP POL\'\/\ L0 Seque)/la. ok eA%CA Svorn V Yo w
cuth ot no verrex 15 myea\-e,&.

Ly Wall: o sequence of e&%& ond vextices
fhot mo.ks howve reveo.-\-eé' e.ACK?A oY
vexnces -

Ly Cucle . @ ot tho¥ shorke omd ends
O\*P‘\'v\& Sourme V“RK v ‘-‘:'—VV\

\

O™t

V‘—Vl—V-s—’ c o0 o VV\I
A — —~ —

diskwekr
vexxwes

;Rexvmk'- Evexux e,Aobe, 16 o Pa+\/\. but not
e\wrvs po¥h is o v-écbe.

Remorx k. Evems podh is o walk, buf wot
every wolk & o (am*\\.




Walk -
\I‘—\/-b-\l.,_—V\ =Nz = Vy — Ve
Vs, v, RS —
Poth:
Ni—Va - V‘b—v"\
Vo
o o Cucle:
Vi Vs V.- Va—Vy =V,

AN P a0

> Lenoth of poth: nwmber of edaer wsed

whem  Yroavelina from one
veriex ‘o onother verteX .

L> Dickonce \Mo\'\:\ of shorderX PO“W\'

Exova\a:

Vg « Vi

VL\ S‘b o \/7_

Q. Find the distonee behween V, and Vy.




A: There ore kwo pathe Srom V4o V-
® V,-Vg-Vy with length 2
@ V-V =V3 - Vy with \enate 3.
d (\'\JV'.\\ = \Q.Vlaw ot shorleat poc‘v\/\
= 9.

L Hovel-Hokini Aloorithm :
15 o wou) to Checekk Tor he exwYence
ok o simple %rapw feom O- A,e%m
seo\{wo&»

(D) Sock the de,(‘x)% who descemding ovdex.
3

@ Delete the Ffivsk elamenk V. Subtrack
L from ¥he pext V \ements .

@ BRepeor steps L and 2, ikl a
SOW\GO\ cond ot s mc;\—




S’ropp‘wa Covd Yong

ANl n'zml\ouivfmob Not enough
e\eu: :(\t: gone ‘:‘\i‘}”):\’::i el me,v\ka&r
2\ o ex\co‘lf:\:(mc! \-;\im ?uv\:\mc’noo
: o :
,QL.)—-——— cubX vachow. cep
S\MPLE L=, ®g)\\_}~\/\/
GRAPR NOT S\MPLE NOT s:;'\\O\,E
GRAPH GRAPH
Example:

Q. Con we construck o simple aroph

wiih Yhe (fo\\O\N\(\O\ &«CO\P&U:?
hu 6,2, 2, L\ 2,2

A ® b,h,w,4n 2,222

@ ®H44,2,222

-\
g%,%,%,\,\,\,z



@ 2,2,% 2,\,\,\
® @323

92,2,\,\,1,\

@ ®2}1:\<7\|\|\

\,0,\, \,\

@ vy, L L0 Wow com &op oY these
’ Skps awnee WY S

bviouws -
M@\, L0 ©
<) -\ Vi .V
WY, /
> ] Vo *Vy
\,\,0,0 Simple Groph

AN rvmoWﬁwﬁ
elemanis oxe™ Zexrq .

”D\'o‘)()h\s condrown s
el .

YES, o s\nple CSWP\A con oe constrycied.



Ly Convected acoph & obmp\,\ thod hos
O pota betwea

CONNECTED NoT CONNECTED
(outr x has connectes
com Povienys )

> Complele oo . o convected oroph in
g .
Wit  everuy, 2 vexryces
Qe canwvecked ‘pt3 QN

eA%e,-
Exmmp\c-.
CoNNECTED COMPLETE

Uou& not com‘)\e-\e\



Reynor ke cqu\eAre ‘fmp\,\ w i v
veryices s demoled bb Ko -

Remaxi: | v a complele %m?\r\ K, whert
NY L, eoch Verkex Was «Le.oome/ n-i -

P(oo?-. W\ O comp\c’re, Sro.p\n, X VAT verlex g
covmeded Yo every other verdex
\0"5 oN eé;c?se,, 40 the &Ol)m ol
ean Vexrtex wi\ e Yhe numer of
ver¥iceh  connected o it e,xc\uci"vxcs
'\*SC;\:--

Remork.. | in o complete oroph Kw
1el = vln-Y)
2

Proof . The dc%ve,e, of eac\ verhex is (wn-))-
There ane W verhices - So Yhe
Zéecbv&% = nn- . Bur we

o\so Know FhoX 2&3@% = 2\l

2




LP%ub(aro\p\A:
Let G=(V,E> , I’\=LV‘,E\3
e sws R s o S\Abqrap\;\ ot G ¢ V,eV
omd E, CV.

Examp\e - G H
| \I\ V?_ \/\' :/2_
m SUBGRAPH
5
V3 \/L\ = @

V, = i\/\,\/z'lsc; 1\/\»V2\V3’VL\'V5’§ D ck

> \wduced Subg(wp\m
Lek G=(V.E) , H= (Vi,E)
\Ne sm) N 1o o nduced subo\ra‘?\z\ of Gt

@DH o sub%ro.p\/\ of G

@ ee E, %% e €E
m ovher wovrds, W dwo verticers oxe connecked \0\3
N céc&e, wa the or\%mov\ , H‘aﬁ must also  be

Conneched by ont eAcBe, L the  Subayaph-



G v Ho
Vo V,
\/:,> V?,
SUBGRAPH
( bwr vo¥ Mduceav
Example:
\ Cj H
\/5 Vi VA
1 \IL\</V2 \/L\< .
SUBGRAPH
(bt voY nduced)
Example:
Vi G Vy Vi [ H [vZ
V?’l/I e Vs vy

SUBGRAPH
(bu¥ no¥ mduced)



Ly Spwnn‘\vw\\)

Leb G=(V.E) , K= (V,E)

We swl\ N % o Spcmm\/lq Subqfoq)\r\ fpuN
\, =V ovté ELCE, W othex woré&
the spavwing subo\ro.p\/\ hos Fo hove al\
verkices of e orignal one.

Exownp\e:
G H
SPANNVNG
SUBGRAPH
(buk not induczd)
> Covnp\vme)/\‘v

Let G=(VE) . G=(V,E)

We sm\k)@_ s Yhe comp\e)ma\\' of (. ) verMces

W (G oxe connected bU\ an esqe itE Yhey ore
VioX convecked ‘ougow\eA%e, W 6.



Exomple :

G G
£
SPANNING SUBRGRAPH
COMPLEMENT
Exmmp\e'-
G G
COMPLEMENT
= - -V
E 1\,‘ N3» Yy 3% but notr o« svb rap\n
E _ ond wnoYt s‘)oym\(\s



Example:

@l

COMPLEMEN T

but nok o su\osro.p\«
ond noY SPO.Y\Yli (\5

l> Ordex |
A %Yapb\ of ordex v has v vexrhees.

Remorle: LeX G(V,E) be a cbroap\/\ o¥
order W\ . _W\QN\ '

IE\ + \E|= RN
2

E= O
E = sek of all

P,A%,PJ; of Mv\

Proof:  EN
E U



Q. \s ther o qraph with v verkices such
thor e\ =107

A SNV\P\%‘V o\sroup\n S

|E| =0 |E\=10
Checl Ui the Formula:

=\ _ wn(n-bD
lEl + 1E\ >

0+ 10= %Y _\0o v
2

Another emmp\e oF o %vap\f\ con e K L
by with 10 ca%zos omove d -



Ly 1somorphic
G\= (VI )EJ C?Q_: C\IZlE‘l)

‘\X: C‘J\ 1S \SQW\Q(P\/\;C '\'0 GQ_) ‘“\&3 VY\OJ:\J be’

drouan &}Y—Qexf)/\\\\ﬁ, but ’r‘neus both \ove the

some  Avaph pro“)ex‘cie)s.

G, and Gy oare ‘\somorp\rdc W 2 a
b'\\'\Jec,\'Ne %\»l\c’r'lon (ont—\'o—one, ana om-o\
BV, =V, such ot Ya,bo eV, ©
a-% ¢ g, then T -F)EE,

EXWM? \e "

9\ ‘Nqa Q

NOT ISOMQRPH\C .

th\aj? dea (V) # deq (W) , deg (V9 # deq(ws) ,
cu\\c\a \Um\))\—\,\ ot G, #+ cxﬁc\e \UI\B%\/\ o G4, efc.



Exwm?\e, :

Gy Ga
\/\ VL W \N‘L
V V
L Y\ Wy
\SOMORPHIC
Bo\‘\'\ ot KL\.

E xaw\p\e:
Ga
>

\'f

G
A v,
Vo f

\SOMORPRIC



Ly K- veqw! o
A Sro:p\/\, G=(V,B) s called K—re%u\\oar
W+ eadh veriex has el =K.

Q. Assume G, G2 are of order vi and
both ot K-vequ\oX for some K.
V)
\s Cj\ ‘\SOVY\OrQ\r\'\c, Yo qu,?

A. Nt V\ecezssaxi\\s. Some %rwp\ns con e
K-—feﬁvn\(»r put have different Q!.Sb\ﬁ

\ey\%\%/\s :

Remark: Asswme G (VEY 1s k-veaulor where
K & o 0dd '\V\*C%U‘-'Wm W\ 67 on exen

.d\‘re%u' >/ T

Exo.mp\e y

s

3 - REGULAR Z-REGULAR



L Ay yocency Makviy

Exomyp\e:

G=(V,E)

Q: Fnd Yhe o\é};osce)/uj wodyiX Yor G .

A B Vi Vo v VY v B
’ v, |lo \ o O O
Va|y O V' O
Vo | O o o O
Vul 90 o O ©O O
Vs|]o + o O O

There oxe Finile mony pessible adyacency
molvices fovr Yae same %rokp\r\-

bor Yhs e.xaw\‘:\e_, B), possible makvices .



Remoxrk: (G, and G, of same ordex oxe

isomorphic 7 % Yhey have o Common

adiocenw Mmoo .

Ly BipM—\iR Gra\o\a
A 3"“()1" (,—:(V,E} s colled b'\‘)ox\-'\\'& \QQ

V= AUR, AN®= @ . \n other words,
evexu Ywo verwces Wi A are wot

adyocent (wo¥ conneced by on eAaeA
ond e,\(ex\,b Fwo verhces wnw B ore no¥

o~<\\30~w/\,\-.
Exaump\e‘.
A=V, Y= A= Veva Vel
N eV
B=v Yo Vi AUB =V

B\PART\TE ACB =&



\/ &= Va8
R= Va A\)% = \/
BPARTITE ANG=¢
Example: . v
A
/sz X b
v, Vi
Vy Vs
NOT BIPART\TE BIPARTITE

Con pe OYOWW as




Remox k. A 3\&\()\/\ G=(V,E) is bipaﬂc‘\\e WwF
& hos no odé \mcSévxeé 0\66\%'

Q- DVOKW %5,%.

A. By o mMeons piparkive %\'ovp\'\ wirn
sex A hoving S verhices, and set B
having 3 verhices. The order of
Yhe %‘(‘&\)\/\ s Hr¥y=9 .

Ex- EX°~

A: e ¢ o o O Az\‘ZG
e o © 8 ¢

%= =

L Compleie Biportire Graph

(N bipoﬂi‘re %';’“P\" VS co.\\‘e_é O- comp\&e,
bapoxif}‘rc groph WG every verdex iw A
ik connecked Yo every veedex v (3.

Remork: K, where mun 2\ 36 the
noyorion For o comP\ek’, b‘\po\r-\-i\-e, Cﬁ(‘O\‘D»\-



Emmp\e:

- A=
Ka,2 K52

Remork: VEmn| = M-

Proot - Hmn has wn eAC:)%v A\ =wm,
1B\ =w . Eoclh vextex o A Vs A,e,cc)ve@ W oong
each verkex w B Whos e\z%me m .

2&%% = Z&S(V\ i Zdzs(w\

VERA weB
NEl = mn *» mwn
gl = 2™ _ mn
7
LPC:\V"\JV\
G=WE).

%‘\f\'\/\ () = \0/\3\'\/\ ot shoriest C\{)C‘e-



Remoxk.: \F o gmpk has no C‘ﬁd%'
we say i has %‘w%\r\ wib v~ 00 .

Q: What is the Q\‘w\—\/\ of kn. W) %?
A. cblﬂr\r\ (Ka) =2 . Swnee w2,
V=Vy —Va—V, 15 & usc\e of \ws—\—\,\
Y m Kw-
Q- WhaX s \‘\f\é’, Q(W\'\A 0¥ ‘-(w\,\/\, , wm =\

or n=\.2
A. CS‘(W (\"LVV\,VL\: oQ - \t- V\z\ oYy M-_—_\
Mere will be no Clé(‘,\é’)b-

Q- What s Ve %\r\'\/\. o} KVV\|V\')VV\|V\.>/29
A. Ct)‘\‘f\'\/\ (“Lw\'v\\: L\
Vi o

P&‘—‘%’Vu,\!z»\/'g---\lv\’g N

%:{W\;W'L,w,’.,. WV\.lS W, Wa

Shoriest uﬁc\e, S V- W,-Vya-WqVy



RUV\OXK ‘EK\MV\ \ E

M\M‘y\\ ‘ Ekm&-V\

Remark.. Vor o cbmp\« KV\ A of ordec wiewn,

Proof -

We know previous\vy Yok For any Comp\ere P

K, 1B\ = n(n-Y)  Theyefove For Knewm,
2

| Bl | = (e (nam -5 USW\% s, we hove -
2
EKW\,V\\ + Em‘ = ‘ Komn
T (ArmN(nim -\)
EKW\,\A\ + Em\ = 9




We aleo  Know pnviovs\\s ol Sor o
%TO\-‘)\’\ KV\,YV\, \EKV\,M\: v\ . SO'-

mn Em\ = (nxw) (nim —\)
‘ 2

\ EM—\ = (nxv) (nem =) _ "MW -
Mn 2-
\ EM_‘ = nxam?— (nxw)
\M‘v\

2

Reomarke: Nwmw will vever e covnected .

Ly Se\f - Complement

o %mp\/\ mwhose Comp\e)me)/\% ¢ 350mc\“pkic, 1o
weelt .

Eme\c ’
G G



Remark - Tor o se\‘F-—comp\@m entory Q)ro\\‘)\/\
(5 oF order w, n=HK or n=N"ks\
for some pestive leaer K7\ .

Poof: e tnow Yok JE| +\E\ = "\(V;:\\.

Bur since G is o se,\Vc-—Com‘)\wm’Co\rkﬁ
%TO‘\O\’\) \E\‘—‘-\E\ So-

=1 _ n(n-V
\El *\E\ = T
?.\E\ = n(n-Y)
92
el = (v -\)

_W“S Means tholr L\\V\, or L\\ (V\-\} - So
n=UK or wn-\= L
= L\K%\



= O\AJ (G) :

O -—~-0
L

Drown  the Q\vo.\{)\/\ > Yvoon Vs c.)\\\/e)v\
Qdyo.Coamer) 0 0XCL

A G

This qraph s vol reqular wor biparhite.
\I?)" V7, "\/L\ -V?) 1S on OAA ch_\é’/

Ramork: Adiocen wodnices  hove o
YRCEN ,
be syvwmetrc about the cl\ouso\no\\-



L Pormutation Motrix

15 o nxvu maXax P osuchh Mok eathh vow hos
e wnumber L exac’:\\s onee - A\l ovner

enkries wil e 0.

Romock: Lek A, be e identity modrix for
G, and A, be the O\A\S&CGMUJ movix Lo

Ga. G, % Gy % T a persuraiion maXeix
P such ok P\\P: PA o (slm}\oor‘)

Li> Di omeAer
diva (6) = mox § d(ak) | &b €V S
M other words, W dwa (6 =X, men

the distounce bekween oY o Veryices
oo wil cx\wou\ss be < x.



Remouk. A\W‘(“m,w\ =2
Prook: A
B
Choose Ve A ond we B dm(v,w) =\.

Choose VEA, we A, ond Ke B .
V-K-w is o path oF \ength 2.

RG)IY\OU(K A\W\(Kv\) =\

Proo®: |n o complete 3raph Kwn, every

verkex @ connecled Yo eolh other by
o edae  $0 for oy o verdices
We disyonce betmwean Yhewn will be L

EXQW\p\e .

G
Vi Vg, Vy, dm ()=
V\_ V2._ VS_\/“\

V
Vo >



Example:

Ve G
dm (6 =2 Vy
V=V, -Vy v,
Vo Vs
Exowv\(‘)\e:
v 2 3 A
0t 0 O |t
A — |y O \ 2
ol O |\ |?2
_O \' V' o i

Q. Let A be *he &A;\,O\ce)/\ai WOCiX of o
oroph G. Find the Ae%m ot each

vexriet .

. &SCV\ Wil be the sum of e vow

or columwn Fhak V s . So:

Ae?)(\\ =\ deq (2=

deay (D=1 dea(N=1



(7\ GL
Vi ",
W
N3,
\'53 -~
W
Viy 3

O\ OO _0\\\_
A‘: Vo AZ-: \ 0 \ O

o2 ' v O O

ot ve ! v 0 O

oF

@ Prove Yok G Go

@ Fd o permutonon wmadvix P such
Ho¥ pp,=A, P

@ ln wovds, Exp\o.wx how o o\e:\- A,
‘:‘(‘OV\/\ A\ bu\ \\/\\'uC‘/\OJ/\Q\\Y\(\ VOWS
ond  colwmns.



A.

O LeX us conshruck o Yivedhive wap Yo

b 6, — G,
F(V) = Wy
F(ND) = W,
F(N) = W
E(v) = Wz

@ We need Yo Fnd the (Jexmm\-a’r}on modnx P
6>TO~X'§1V\% Fronm  the \é&/\\-&\ﬂ vv\a_\-ﬁx 'S;L\‘-

To do Mus, use Yhe b?ge(_\-‘\\!c funciion

ooove ond o\ﬂwaef fe vows of 1y
accorémg\ti .

Replace Ry
b:j Q\

N
r e




Rep\aae 2,
bﬁ RQ_

\

l_5 o0 ol
O - 0O
QO OO0 O

OO/——

G
® our bijechve wmop wos feomn Go

v\-C) G\ ‘tV\S‘\’CO‘.é, SOUA,
then PAL:A\P.

K : GL_>C7\;



® T qer Ag fom A -

Reploce the  vows ofF A \ike this:
L Replace Ry by R,

Ly Replace Ry Dy R,

L Replace Rz by Rz (wo d«ox\seb
Ly Re\o\mce R, \0\5 Ry

Then. veploce Yhe colwmng of the wmadrix

ohtoined ke thwis:
Ly Reploce Cy by C
Ly Replace C\ by Csq
L Replace T3 by Ca (wo c\«oms&
Ly Replace C, by Cy

P\‘%S@J( ()?J(QOY‘IY\\)V\% e Yow ond colwmn
chonges ow A, the MM\\MS walcix

will  be AZ -



L{? DOW\‘\\/\O\‘;V\Q SC‘(
Lex G=(V,E). A subser B of Vi
CQ“Q(& O- érOMM&HV\% sey © O(e)fj vexye X

M V=B (¥ minus B) 16 contecRe by
on 6‘50\3& Yo ok least one vexdex w3

Exom p\e .
. }(2 .

B = {Vg, Ny, VS% S oo AOM;V\a)((l/\g Sﬁ\‘.
L=35ViVa% s dgminaking set-.

= {Vl,\/,,\'g 5 o AOm}V\OGr'mg sel.

> Dominating NWV\\OQX‘
denofed by g, s the size of the
smo\les Aom \/\oéml\% st



Remowrks -

60‘4m.m>=2 \S(MV\):\
mw 2L nv, 2
6(““;"\) = |
EXc;ynp\e
W © T =\
Vg . SRS
Minwvpvt AOM\V\&'\'\V\OA
sek = %_/Vz'zs ‘
\ vy
2
EXQ}mp\e '.

0(6)=H
MW IV WA Aom'mo)r'\r\?)
stk = 11.5, q, \@S

Vig




Ly Size
A araph of size v has wn QA%%.
Size = \E\-

Ly Tree

A covvnecktd g VPV G is called o
free W G has no cycles, and W
e lween exery two dishivict Verkices

thoe 6 o wugue Poth
V
Proof:  Assume G o o free. Let aib € V.

We veed Yo show Hho¥ o \miqlue, pati From
CA 3\'0 b Q)K'\SSTS-

-+ PAsswme PP oxe

two d&\flexent Poﬁ'\'\s o \o
{}TOVV\ o Yo o \—\' S V
clear thot G will hove

Q- "‘30\6- Buk G s o Jmee\
This is o contvadiction.



We need Yo show thak F o raph s
o \m\q’V‘ﬁz \Ooéx\n veYween o ond b,

Yaon ¥ e o Xvree .

4= Astwme o w\}%w poAM between oo
ond Yo exisks; and thokx G & o
wok oo Yree . Since (G s conneced
ond 16 wno¥ o Acee, Yoon 3 o %c\e,
50% \j‘_\/l—,,.\/n_\/\. Hmce,
V= Vo= -V 35 @ pcx\"v\ Srom V.~ Vn.
Also, V=V is enotner path from
Y, ¥° Yy - This weans Jok G is o
tree — o controdichion Yo ine
as'sum\okiov\@

Exaum ple:

K\,%

AN

TReE



Q' \s every e 0 K, i For some n?
J
A No. Take fhis example:

\\T 15 VIOSY K\)V\ blA\_
T s sYW\ o free .

Q. \s every Bnwm o tvee ?
A, No. Take Ws exoump\e

It 35 no¥ o Yvee
W becamse it has

o. C cle -

RQW\OU(kt E\rf,(\s M\,V\ o & Yvee but ot
e\f@/\'\ﬁ ree s o Kyn.

Reavtaxk: vaﬁ ee 6 oo evnvvx bul
not e,\[f')/ls E)r\,vv\ s o ‘ree



Li> End - Vertex
o vertex v b coled an end-verkex

K‘;Q’ AGOS(\I\ =\.

Remork: E\f&as rree Was ok \east owe
eng - Veryer -

Remarte. R connected gaphh G o} ordex
w e o dree Wb e ofF size -\
\\[\;Vl) \E\_';V\.—‘

Q. Asswme G s o ¥ree. Show \E\= n-\.

A @ =2, fen ¥ i dear.
@ Assume the fesult is frve fTor some
n=K, ny2.
@ We prove  for =l
Assume G s o dvee of order k. We

\how \E\= K.Swee G ¢ oo Yveee, G
has on end vertey, somy V.



Now G-v (remove v feom %(oap\/\ &)
o o Yree of order N

615@, we Kwow e number of eda,%
ok G -v ¢ K-\. This weans e

awmloer 0F eé%vb w G e K
Q Con we have o vee o ocdex %
ond s\ze 67

A No. JE\ musk be ove less Hon
WL wuk 8- 6.

Lp> Compo nent
We 5“5 D s o compov\e)(\'c oc- O~ %Vap\/\
G ED O~ Lonnec‘v&i ‘\V\AU\OBA suquaD\r\

oF G and D ¢ no¥ & supgraph Q}_‘J |
o connecRd  subarophh of CL




J G v
hA —"
g \/$
\[L\ Vs N e \[q

Q \s B a compowej/\* of G?

A. No, snce & ¥ o subgraph of o
\m(csex Covnvecked sub%T&(JV\ OS;. G .

by Eccontvicily

1=

Assuume C=(V,E) 1$ connecked.
e(V) = mox id(\mﬂ |wevy.

Ex OWV\(J\Q :




Q Find the eccentricity of v,
A e(V) = mox id(V»M3\meV§ .
&L = wox (12, 812, 40D, 3L &

:W\O»X{\,\,Q’?)%: 2

Remork: 3ipm (6 = mox § eV veV ¢
Remork - m&\us(&): vv\‘W\{eLﬂ\VéV%

Exoumple:
' V, Vu V‘S
Vo V=, Ve[ I\/?
Q. What s E(V\\?.

A e(V) = oQ bvecause the cymp\x\ 'S
wol conwnecked so Yhexe 5 1O |
pox  Fvom Vy ¥o Yhe other verties.




Ls> Poth - Gropa

|
A groph P, oF avder w s called o
paxia qraph ik Py is N~ V- Vg Vi
where  V, Vg, ... Viu owe  distiney verhces.

RQXWMK'. Swze 0" va | n2 2, S wv-=\.

Proot 1

A PO\\’\"—C{)"O*P\’\ 'S o tvee. Snce Pnls o0 Yree
of order n, we Know previously Hhok  fhe
gze ok o Yvee oQ order v % n-\.

Prook 2

PV\: ° o 2 e - - . o
Vi Nz Vz Vy \wn,

dea (V) = deq (V) =\
deoy (V) = 2. V\i<idwn

che%% = 2\E\
2(n-2) +2 = 2\E\
\E\:’. V\—\



Q \s P o \oipoor%i\-&?._

A- \I\—VZ—\/%_VL\—VS

\665 P\vw\ PV\ 15 O- \o\pox%\*e \X— wWe P\c,k

every Q\an*e Verle x 4o be W Yne
SMMe SRt

Remark: B(Pn) = Y—%‘l
Q Fnd C(PW) omd conshruct smo\les ¥

AOMWNARN 0 sek.

Kooy = T2 =4
V25 Ny Vi g

— Vo )= Vo=V, —V
V=V Va =iy (Vg Vi ~ Vg Vg )= Va— Vi~V




Li> _%g\e Gmp\n

A qroph Cw oF ovder w oond S\Z& v \S
called o cyele qraph % ) is of Yne Sorm

\I\" V?_—— Vg\fv\."v\’ Whm \I\,V?_‘o..\/v\

ot distiney Verhces.

Remork: Cn s o biparkie &F v is
eNev .

Exomple:

\A




Q Fnd ¥(Co) ond conshruct emallest
BOMWAARN & sek.

A \G(C\o\ = r\’%‘\ =1
iVZ'\IB Ng Vo

~ Vo )= Va=N0— V
V{Vyr Va Vi (V)= V=V (Ve )= Va—Vyg~ i

Exomple ©
|




=3
5(6) = -
I Vl—\ )
V\ {Vt
Va
Cj / v \{5
Vio :
Vq 1 ’ .Vl
: v B
\e *
Emmg) ] :
=1
\6663/‘_\’% \/5.
{VB\

Whas
G
%
(&\O' -
—\, \re—é %)(' 'S
MY\}V\(\)\J COY’V\eC[,\ \J\AOL

LP SP E\Iextﬁju\o%r&‘b

K .

X V\S

RQ’MSPOU/\\(\J

O

Yeee .



Exoump\e 4

Cwn 7
Cn-©
>
EX(NM\O\Q,:
G [\/\ [/L [\/3
Vi Vs 4

Q. Give we o SPMV\KV\% Yeee of G

K‘ G - ivl-—\fg , V\“VL;ZS ! ’ [

G- i\fy—'\/b ) V\-VL;LS ’ [ ’




L Cuk — Verlex

lev = (V,E), veV. We 501 V15
a tuxr—verkex of G & G-v e
disconnected . When we vemove
v from &, we a0 remove o\
eéae/‘s YroXx ove contecked Yo V.

Q G(V.E) is connected such ot
Ae%w\;\. \s % possi\o\e. Hha¥
G-v s c\'\sco(\ne_c*e&?

A No. Swnce Ae%(\/\z\, V s connec¥d
Yo one ond OV\\S VeriRyx , S w,
of G, so by vomoving v, G-V s
contetted  of  ordex -\ ond Size
w=\.

Romork s \& v is o cu¥-veriex of o

conne cied oveph G (V,E), then
dea (V)2 2.




Emmp\e:

G o
Vi
Vi
Ve,
Exomp\e :
G Vy
Vg
Vs
Vi
E)(cpm P\e ‘
My

GPV\ Vo

Vi
y
5\/\ s oy a
cut -verlex
G-Va, ¢
Ve,
Va
Y;
L\ Vo s ¥ a
clu’r-vexkx
Py — V3
L\
vV, Vg

V2 35 o cur=vexrie x
2



G = V2
Vb
G Vb . .
Vi Va
Vi
Vg N .
Ve,

V, i& VoY oo
tu‘r ver +8 %

\/
@“M A- Vé’

R k I_e)( (} \D& CO(\(\EC\'E

O (:\" vex € X ‘\‘T‘Q & W,Z é SS%M< |A
RSQ\’ : 95 pO\'H'\ -Q(o(v\ W -\-Q Z P 0585

W\ V

\'\I\(O(AQ\/\ V-

\e: X.
E»camP o
- - 1, We convol o
Va
Yom ‘ |
Pa‘\—\:\/\;\v\\- ‘)&SS\V\S Vo
w§ Q

Vi
Ve



Q Asswme v s o cuk verlex - Show
A w,z eV meh thob evey poshn
From W Yo 2 posses Ywough V-

A.
Swee Vs o CWF yerdekx, G-V is
disconnected -

= Jw.z eV thaXx o viot connected
\ols o- Pa,\'\/\

= e\NXﬂ \ood'\/\ from w Yo z mwsy
PosS  Faroughh V.

Z

=



L> Bridae

QN 630(;(’, e ¢ called o bré%& \m‘:
G-e 15 disconnecked ,

Remark: i€ G ic of oxder i omd  size wn,
ond & Vv is o cuk-Verlex oF G, then
G-V s of order W-\ ond size w-deq(v).

Remark: & ¢ 35 an edge, fhen G-e s

of ordexr v and size wm-—1\ .

EXO«W\p\e :
G N\ G - (V‘—V,_\ oV
J
- Vy = [ 1 Vy
Vu, Va Vu, Vi

Vi—V2 s & br‘\&BQ



Romork ; Lok G (V,E) e connected . An
eés& e £EE is o lorid'qe L& & s not

an edop of any cucle of G-
U J U

Re//V\O)('k . CV\ l’\O-S Nno br\ds% .

Romari : Jn o 4vee or a P, every
PA%@ GRS \on‘dae,'

P(oo‘;: Asswne e s a bridae . We

need +o cshow “W\o\\— Q\/Oﬂﬂ [)3 L\l 09 G
('\‘? sutdh o C\ﬁc\f’_ e)gis\-'s) does wnor
confoin e as N eéae,-

= Asswwve C 16 o arcle 0F (5 such
Mak e s on 6&%& ok C.

Hente, (5-e s concected since

C-e is conpected. A controdiction!



£ fswme G does wnok Wove o eucle
C whert e S an eé%,c of C.
Show O —€ is disconnecyed (e 1s

o b‘(IASED' /b onl\j poﬂ'\ 13
a-v.
Iy
oYherwise we

form o stc\e'

Ly Cardesion Produck

G B G, when V=S by e, beV,t
ond two diskinct verkicen of V, Sou (a0,
(0z2,by) ore &é‘:\o.ce)/\’(' ( connecied "‘5 on e,écbe,\

&L O, = 0o ond b\—bc;_e E?. or A\~ A4, € E,
O\Y\d b\:b9_°

Exoww?\e:

Gt/\f‘\ G v
FASSE

iy

Vexhices o8 G B G, = VXV =V

N = £ (i, Vi), (VV8), (N2, V), (Va,Vs), (N3, W),
(\131V5)§




G, 8 Gy

(-V‘ / VL\\ ( Vi I\[E\\
(\[2 ,VL\\ (\I')— 'V5§
SENY (V3,Ve)

Pv:moxk: & G oF ovder . ond Gg is
ok order i, Yhen G B Gy is of order nm.

L Bow to Niswolize G, T Gy
® AY eoch vexrkx oF G, dramn o copy oS
Gg.

@ \F w,veV, amd U-v ¢ E,\, then connecy
Yhe covrespon é‘uﬂg verkices of Gy

withh on e,éaoe.-




A (W (VS) (W) (g,9)

(2w (3,53



(3.:9)

Vi Vg,
1 6)
(ub (2,8)
(2,5)
K,t
S (&)
(1,9)



Ly I—\\wex cube (v -cube)

Q= K. l
\
00 /O
QQ_: K‘)_ D RQ_ D
O\ \\
oo TIT
O\O h

QL\Z Q?,[] l‘(q__




Remorks abour Qw :
@ Qn= Qn-y O Ry

it \V\ = Zw/ coclhh Verkex is V\—s’frincs
ot 0s omd 1s.

@ 2 verkices it Q. ore connecied bu
on_edde ¢ they dilfer M one and

on\y gpne place-
J ]

@ Qn is w-vegqular (de%(\h:vx\.

@ |e\=n2""
Proof :

Zdeq (V) = 2\ E\
n2" = 2\E\
2" = \E)

bt GKV‘\AV\(QV\\) W22 = K




@ Qn s biporkie.
@ D (Qn) = W

Peook -

Consider Qy - Fvd d (001, 0010) -
0\O\ — 000\ — 0000 —— 0010
Podin of \O/\Of&\ 5.

0\0O\ — 000 — 0000 —— 0010

Podin of lenathh 2.
Comw we Fnd o \ood'\m ok \@/\8\'\4 2

o\q\ —— —— O0O0\0o

No, because 010\ ond 0010 ditter in 2

p_\ac%.

What obowt d (000...0, W\...\) ¢
d (000...0,\\\..\) = WL

@ For Qy, d (v, W)= uwnber ot ploces
where  Haen  §iKSex




Ly W\Ae)‘pez\ém’r Qe oF Verlhices

0 Subeet T of N o called on
‘\V\é&pmd@n’r sekx of verhicen iEY every
2 vertices . T are von-adjacent
(e\re,vg 9 Nerycees v L oue v\;\—
connected by ON @A%ﬁ3~

L> Mosivugn \Wdependemnt Sek
the \Oxose);\- '\V\c\,epe)f\&e)/\‘\' sel.

Ly Mosionwm  Wndependent Numbex

o (G)= \M\ where M e the mox
wndependent  set.

Example:

Y\ G Vo Nox \V\&)Pwdem\)r Sek

$vovud ond §Y, v
. X (6) =2




Exam p\e :

(7 N2 Va
) @"" >\f._\
N Ve,
Mowx \wdvpm&m\’ Gekx = %_V\\sz\’en\f;tg
X(GY =1

Remark = Yor o Km,v\‘ e Mmox '\n(\open&m’r
sex Wi\ be Yne ¥ ynax (w,wn) . o d
ok (K = vnax (wa,wY .

Li> Vexlex - Cover

G- subseXk C, ox- \[ S Ca\\eA O\ \ex\e x —
cover of G ¥F evey edge of G has

N Yerminol  veriex “w e Y a—b
S 0N t&%e or 5, wen e C ov

becC):




Cxomple ;
Y

G‘/\ \extex - Covex = {xffg

N o Va
Gy
AA Vz_

Nextex - Covex = {\J\,\/L& [ ]

by Vertex Covexr Nwmber

B(GY=1cl whee C s We. Mvimum
yorkex coyex of G.

Remork = C 36 o veryex covex ot V
gL V=C s o wmdependent sek.

Proof -

—, Asswme C is oo verlex-cover. We
Need Yo show V-C s an
‘\(\évpeyu&w‘r seX oVF vex¥ices -




LeX o,b € V-C- Show o-b €E.
Hence, ae C or be C . K~ confradichon.

&= Asswme \-C & on '\V\Ae,vendz,v\\— ¥,
Show (C 18 oo Neriex-covex, Asswume
o-bc E fovr some a,b eV Show
0ecC or beC.Svce &-b €k,
we conclude thakx o ov b £ V-(.
becouse & botw a,o W V-C
hew we convo¥ howe the aé%e
n-bo. ¥ agVv-c, el . it
bédVv-C, becl.

P\G)MOW’( . A%\MMB C 15 o~ Nexiex-covex.
\el + (v=cl = \Vv\.

Remorke: X(&Y+ B(6) = |Vl= v

Proof: We Kvow thox el =+ [v=cl=\vi.
Acsome C is & Minjmuwt VerRx - coNer
sev. Them V—C s moximosm ndependont
sex. ¢o \V-Cc|= x(6) and \c\ = 6(‘_G)




Evomp\e;

C? VAN Vo
Mviowwm vertex -
covex se% ofF (&
\ i C= %Vz.VH:V\g
9 v,

Maxawn \vxc\apw&m\' Sk = V-C = ivs,vs?s

Exowtp\e :

Mivi v vexdex -
CoNex SQ,\’ O; B'-MZ (5|,\,'3>
C= %V61VL\V?§

Maarmuuwn \vxc\e{)w&m\' Sk = V-C = SL\/‘,v,,vg,,\/L\?S

Remork: 1& B s Conviecled, then
@(CA‘-‘ Vv\in{m.vJS and 0L(6) = max {m,n}




Remaxtk: Dommorionn ¥ 15 ot alw
e sovie as the vertex cover sey.

Examp\e :

? L\ - ® @ 9
'} \ Vz, \/3 VL\

{\[\,VLC% Yo oo Minicnwmn &qm‘.r\o\‘c;nﬂ st
SLV\' Vug & not o verttx-cover g

§V2,V2g 36 both o miniswm dominal,
o} () & MMM vextey - tovex sek’

R(’J(Yl()urk'. E\/Oﬂﬁ verlex-covex s a Aomk\o}vir\a

sek, bk ok every c\omf\/\a\{waé sek s
o Vex:ex - cover,

Romark: Lek G(V,E) be o convecked Sm\Q\/\
omd C e o sex ofF vexkeen. \§ CVis

O IO AWM \exlex  cover, then (C s
o AOMN\O\*{\/\% eeX pur need vox e
O~ Yivivium A g (V\‘\V\O\\-‘\\/\S se .,



" V(Ka2) =X
Vi %'\?f:; VS {\l| ) Vb\—g m;\/\ AOW\- 5'2-‘(
W B(Kza) =3 M Verkex -
Vo Vo Vg {\I\ N2, \{375 cover sek-

Remark: Assuwme Cs(V,E) ‘s connected ok
order vi. Then ()~ (6)= W

Pragt: Let C be o Minimum Verlex cover
of . Then P(6Y=Ci= B(e)- L&k M be

0 WMoxiMwaa  ndependemt sex of vertices .
\-\ey\ce A (6) ::\N\\= Co- We know YweX

X(6) + BL) = Thus (D +E(6)= W,

Q. (V,E) i cannecied and of ovdexr wi.
Soon M 16 o MoXitwa ndependent
e suchh taok \Ml=mn, wmi < wv. Fnd
o Mnmwt dommoading et and  fied
5 (&) N



A, c=N-M
MuiMwm MULA WA
voclex covexr —  dg m\r\o\’cic\s se¥

So C ¢ Ye MO VIUIA dOm]ﬂOé\:\nS cox .

X(@) + FeY= W
WM+ 5 (6)= W
5(6)= nn—-w

Ly MOL*C\/\M@ Subgvap\/\
@ A swboraph H (V,ED oF G is called

m(l\(',\'ﬁV\C:) W Tov eNexy W eV,
&eg(w\ =\.

@ A svbgraph N (V,ED oF G s called
ma’vc\z\"\V\gS e every eé%e W E, has wo
common Vertex with eveny other CA%e_
W Ev 1 otvexr words, F a-bo
omd c-d cg,, then ao,b, ¢, d
ore dishiner  vextices




G H
\]\ [ J\Iﬂ. W, ° 9 W'L
Vo Ny Wy Wy
MATCHING
SUBGRAPH
Example:

Vg Va

Q. Doer & have o maifcb\:m% subam\'o\,\ of

size 52

A Ve Hz{"f‘\’a.“t\*\/s,w-vq,g-




- U \J
bq

q

\V\

\M

VV\.

A

\A

&'

oy
3
“Vq | -
_ %vv\ o :
\‘\-: {Vz s
P\‘ | -\'\Mg N
Yo

Ma.

Ly

h.
9P
bar

S

'Vlg
wiakclu

uwwwn

M

(0N

Wi

Me

¢ c

0

\Ze \M

H\e(Z\)z

"

Vo
Vi

G
wmp\e s
Ex

Viy
N3

"Ve%

Ny

"Vg )

-VL) \I3

{v

H:

Vi
Vg

2

(G)

m



M= {sk or {¥a-Vak

T
/\ oy %V\'Vz—i
Vo No VW (’-{,3\ =
Exwv\\o\e
' G
M-: {V\ \IZ ,\I%’\[L\k Vi \f?—-
or
i\l\‘\f?n Vz’\['-\ls
N v
m(G) = 2 = “
Exoump\ e
' %65
Vv Vg Nz Nu Nio ‘.fu
Vo Ve V3 Ng¢ Vq
M= §v,-Ve , Va-Vy 1 Va-Vei Vie-Va, NioVa'g



Remarks  Agsume G s Bm,w such Hhat
|A\=w, \Bl=v, ond wmow. Ler W be
number o  verYicen wa A Yhak e
conviected Yo Some  Verkicer W B ond
let K be the nwmber of verlices wn

R Yo} are conbeckea by o
come  Vexrhees W AL TThen

cAg)t Yo
m(6) = min (h,K).

E?KOJV\P\C :

<=1
# of verkicesr wn

A: . . . A conneched Yo
M\ s50me verhices wn B.

B - v, v+ VY3 Va h=2
‘ # oF verlices w
VV\((}\: M‘V\(L\)()—\ =71 B conneched o

some veryices n A .

Bs,u



Lp Pexbeck N\Q’Vc\/\lw{\,
Lk M be o mm‘cd/dwoé $eX, s M .
M-; iff\\—b\ ) 0\2,"\02 Vo % anad

V= Sab | aso e MY 1 Vi, we
501 M s a (wa\:ec\' w\o&rck}mﬁ-

EXMp\e : ‘

Ny \/7—-

M= S vevg V3 -Vuk [ l

Vy = {V\.Vz.VgNu\ﬂg =V

\f«!> \/U\
EXQJMP\Q,‘.
G N No pocfect wiakch .
Vg Vg M = SLV\‘Vz, Vn.\—\/c,73 oY
i\‘\‘v’l; V%"\f‘\,\\—%

Vy Vs \IVV\:SLV\cVle’SuVL\q_?)i\/



Example :

PQ . V\—vi’\/%—vu‘_VS—'\/B
M = i‘l\’\/m Vo, -Ny, Vs "Vé7"5

NV = innVL‘V'stV'—\. \Ig\VeFZS = \/

Remorte: every perfect wakeh s oo moximum

moaXth bub wot evory moximuma wateh s
O pexlecy wokch.

Remork: Cw or P hove o perfect
vv«x‘vc\z\ivxc6 w16 evon , and wm((Cw)

ov M(Pn) = \_%:&: _A?:_\

P\Q’V\Mk Kw\,\/\ \I\M O ()e)(;ec)( W*C‘/\A.V\ﬂ
S me=n -

Prook : V"\(KW\,VQ = vvx',v\(W\.V\\- So Yo
WhWowe Pe‘(s}bc‘( M&\ch’\;v\s) =W .




Ly Edae Covex

A subset Ec CE i called edge -cover
of & *% YaeV, 4 an ec\ae, A-beE,
Cor some be\V-

Ly Micimuom Edge - Cover Nuwmber
Be (@) = \Ec\ suhr thok E( s

DAL Ry VU, Cé%f, - covexX .

Exowp\e -

C7 \/\ Ve \/'5 ‘\/(_\
\!6 V(, \/‘-F

NO EvGE - COVER
(because e graple hos “solated verkices)



EXQ-VV\P\G, :

ALY

Vo N¢ V=2
E,. = {v\,vg, =V, Na-Vg, \/b‘—v%
ﬁe(cﬂf- .

Remoxk : |E GCV,E) has wo wilated
versices, thenm m(6) ¥ Pe(e)= v -

Exomp\e:




> \ncidence
for G(V,g), ee G, e=a-lo Tor Some

ao V. Then we somy e s incideal
at oo (ond e v wcident af V). |k
e s wadent or o verwrx o, i\
WMeans e=o0-% or €e=b-o.

Removk. - d@%(\l\: nwmber of e,A%y,
Yrok ot weident at v,

Q) Find e wadence makeix.




A incidence Moy -

?

e\ | 2] €3 €ulEg| C6 |
Vy 1 l © | O @) \
V2 \ 0 ) \ o Qo
vi | O 10 Q | \ )
wloQ@lo |t |]O |1 |\
[V« ] 0 1) \ [0 [o (o |
L’? L‘Me GV‘O-{)\/»

Bu,Cwm, NEM, € V(LG ore
connected by on eéc:)e W oen,

ew, have o commownn Verk®x W
C, (e WCidRAY ar some  Veriex

of G)-

Emamp\e .
e
K Vi L(K2) &
€2 € 2, A
€ e
V3, e, Va ° 2



L(K, 2) -
v‘ /\,CZ
>
}‘(\ : C\ 63 Kg
83 | D X
\/\—\ L(K\'%
Va,
v,

\g
L (Gy) -
() ~
Q. ?;S:mcjl ?

\

above .
p\e —
the excumK e
Take o 5
L No. L—(LL\ %3 b
L(K2) ~

Exwmple:

Pu)
Py 2 L(
ey .

PL‘Z e

X
Clexron .
™ : ovraeX
Va,
Va
: €\

\ L(P'-\\r-'B K\,Q_
S - £

€,




G L(G)
Ns vy
e\ e
Vi / ; ; \
v
! e< N €1
Y

Reomoxk: Assume G s of ordex V&= and
size wi, LeX V=5 v, Ve, - Vn be ne
sek of vertices of G. dv,dp, - dn e
e &‘6% of Vi1 Vz, -+ Nn Y?‘-’Svec’c}ve\t»).
Then L(G) 15 of ocder m ond size

d\2+ Aq_l—\—u. C\v\l— 2VV\
L

P(”ou(j .

Choose o Verdex Vi, )V givgn . di's
edaes ot connecke & YO \i - Thee ore

ds ow con  choose Sron At
z> eA%@: Y

Number of edaes in L(G) YhaX connect
e di's edges (di's vesicrs W L(6Y):



()~ ()« (5)
d\(é\“‘)*‘ Az,(éz-\x .- dv\(dm-\)
2 2 2

A\‘L'\‘Af{--.. Awl "(d'\""AZ‘\’ . AV‘)
2L

|

1"

\

= d\q’-‘ca.,}.\- Ah"-, 2\&\
2

Q. Assume o\m\o\n of order B hos
Aeﬂ% 2y 2 L, LY. Fimd Ye ordex

A: Ovder of L(G) = swze o G
= ze\c%u) _ 2+2x\x\+\ - 4

—

= 2

Qize of L&) = A+ d A nio 2w

2L
= 2+ 2% Vo \ 2 \1’_2(,,\\ _ Yy
21




Remark: Lekr w be & veryex wn L(6) (so
W 15 owm cA%e WA G) “We”\, AQS(WB .
&(3(W)= Ae(ﬁ(oq Te &3(\03 — 92, whexe

w= 0-b &€ Eg, a3 ab eV

Prook: ovsume W s ad‘jacen* Yo W
nm L6). Thew W ond w WWave ether
o A5 O Cammoo Neriex, or b a5 o
common Veryex.

deq () = [deg(ed -1\ + [deg o) -1}
= 663(00 + deg (b)) - 2

Ly E\A\ e Y0 Grap\m

& qEph of order n omd sze wi is
colled  Euwleriom 8% 3k is connecled
ond Fm & o subsm\o\n ot G,
wheye T is 0 “Fake —cycle” with

wa edaes ond  ordex n <w ( \-e- verhnces
ort allowed Yo be repeayed)).




T:me\e:

Fon

O O 0y --. O

W We cucle, we Visk each edge exachy
once, where vexntes con be \jsxed more
Yo  ownee .

E xamp\e 3

NOT EULERI\AN
Fo comnoy Ve consyructed

Examp\e:

Ve, Vo
EULERIAN)

F(-‘ o V)_' V\"\f?, "\[\,\— VS—V‘ - V'-]-—Vs —V?,—VL



Rewmor k. “Foke c%c\e.“ 'S o0 Gircuvk

Remark: oo connecied qroph G s Enlerion
iR deq(v) 6 an even inteqer > 2

For ever VeV,
?TOO?:

— hsswme G 15 oF ovder v

Fisy we  Show ok G such '\'\'\o.’( Ae%we ot
eot\  Verkex 7 2, cantaawne o ouy,\e‘

VvV Vo
W V-V, s on e&c.be_, we Wi\ \hove o cbc.\e.
it woy, then:

F VW-Vi, 1£342, s on e.Aobe. we will have
Q. Lv‘y;\e_.

Awd s0 own...bur Ywis process wusy Yorminale
becomse Yne %ro.p\« 12 oF Tivide ovder w.



Nonce ar same Powny we wusk have
Vie—Vy &S on eétbe fov some V<v<k-2.

—s Assiome G s Enlexrion.

We weed Yo Show ok the Ae%ve,e. oF eachh
verYeX s OM even ‘uv\\-ecsu' > 2. G has
order v ond size w.

Fan® Vi—Vp = Vg — + -+ — Vi — V,

S 2
-~

Wos wa distinck ed 9es
(but verhices need wod be disyineyd)

E\wr:j hme We Visw a verkex NUiwn Fu,

Ve will be 2 e.A%es connecktd +o Nj.
dince Yne 6&3)% o T Ove distivch, we
Conc\ude  deg(¥) = Tk For Sowe K2\ .

«—— Assume Ae%vu oF eotMm \eqlex ot G
5 on exbn 1‘\\6.%0?}/2,

We vneed v swow G s Eulerion.

Sivnce Yhe degree ob each VUrkx Z 2, we

Aveady fProved YhoX G musky have o



Ctﬁc\e C.\E C contons o cé%e), ok &,
Men we ove done.

<— Assume C does not contain all edqes
o G,

We veed Y0 prove ¥ne converse bi& ‘nduckion.

Aswme  eveny coneted  grop\n with even

deqroe verXices omd of size < v is

Euwlexioon - Remove all e,écﬁe/:. fvom C.

E.xo.w\p\e .
G Vi V¥ Vi v,
/T C ]\
Vio Vg
Vq V% V,_\ \/5
Remaove all edaqes fvom C.

(7 Ve . - s V2
'H:\ H3 H% H.
Vo A
| Vi

(s becomes disconnecded .
LC\' \’\\, R, --- Hk be '\'\'\e COMPO(\Q)/\\'S OP G




“The Ae%ne of eoch veryex of every
component s either 0 ov an Even inkeqer
Each component mus Y Wgve OF \eoSY

one \erex of C.

H, musk conain o verdeX ok ¢, S0y V.

3ize of W, < m, ond Ae%me, of ecach

verte X of W, s even an & R 6

connecked , %o ¥ musy Whave o clrcui¥.
Ny— Vg = Vg —Vy — Y,

L Semi — Ewlerian

o connecked ‘5(‘0.()\« o called semi- Euleyan
& Mhere s o Foke ‘)o.—\—\n

A=V —Vz— --Ng—lo, where b,

ond e vernices need wox be disxincek.
v has a\l e&%&, of G .

Remork: “foke pafh™ is o *vail.




Remark - & Connecied aroph S semi -
Eulexion £} exo.c‘s\g\ 2 vexrxices oIt ot

044 A"%“C&

Proot -
— Assume G is  %emi- Eulesion .

Foke po¥a: v, —v, —Vi—v,— - Vi
~— —— -
Vi £ Vi

musk use all e.Acse/;

Ae%m of eachh Verlex is evem except Vi Vi

P\Omaxk " Ew\cr[oq/\ %ra‘)\/\ conn never ve
somi- Evlexion.

Ly Hami\Yonione Graph

6 coaanected acoplh G of ardexr N ond s1ze w
s coled Rami\zvonion k% Cp s o
6\&\03\[‘0{)\1\ otk G.

Rumark: & coaaecked acaph G of avder n
ond size w is called Wami\Yonion Patla 1fF
Pais o subg‘«wp\« ot &




Exo-Wl? le: NOT EVLERIAN

every vexkex should have
cven &%‘(‘8@

Se M\ - EULERVAN
Va Vy exac,\-\~5 2 vexXices ove
odd Ae.%w.e.

RAMILTONIAN
> L C’S: \‘\"Vz“\fg—\/q —\/q)—‘/\

MAMLTONIAN PATH
Pg : N = No— Vg - Ny — Y

Remoxie. Asswme G is  conhnecked oy ot
ovder . Rsswme Hnoky d&o&(xwe deq (W) 2 v
for evexry wnov- adyjocemt Cyertices X, W

Then G 16 hamiltonion .

Q. Cownstrucy oo Hami\Yonon avoown of
order F- -

A EnpsiesY exoump\e - Cq.



Vo NOT EVLERIAN

every vextex should have
A L) Vg even &%\ree,

NOT Se M\ - EULERVAN
exac.\-\~5 2 vexXices shou\d
‘{L\ Vg oe 9d4d AQ%Y‘E?_

HAMILTONIAN
Ca t Ni= N3 =N =Vi = V3=V = Vg = Vg =V,

HANWLTONVAN PATH

Pg t Ny = Vg =Ng-Vy=V1-V, — Vg - Vg
L Petorsen Graph
connecred, ovrdexc \0, size \S, \hos e
shoye:
NOT EVLERAN

PC'C every vexkex should have
Vo
N

k ; cvenm &%vee,
# X

NOT Se M\ - EULERVAN
Cxac.\-\ss 2 vexhices should

Vy Vay ve 934 deqvee




NOT HAMILTONIAN
cook  ponerruckt Cio

HAMILTONAAN  PATR
P\O" V\" V')_ -\f% - VL\-‘\IS" \fo\—\je —\I%—- V\O— Vq_

Remaur k- Peterson Groaph ‘oecomes R oo \Yonion

Whon we Yemove A vecdex  Yeom k.

E XAMP\E -

PE)V =, , HP\N\\ LTQN\ p\N
‘o C’ﬂ \Iz"v?,"\h_\—'\fg -\fq
,\[1_ - V\O’V%—VL—V—L

Remoxi: VoY every aedph oF order 10,
s\Zze 19 15 lsomorp\/\'\(, xo Yelexeon 6T0~P\zx.

Exw/v\p\e g

7\




Remork: Kw,m 15 Haomiltonian §F wv=wn.

Exomple -

Ke,9

‘W NOT RAMILTONI AN
T we showrrof o vertex
& Nexr¥ex w sex A-

Ly Chromodic Numboer

Micivum NwmMber oF co\o¥s yieeded Yo co\ovr
Ye veckheers of o %ra\ok auelhh  thok Evexy

ywo Oé;xosw/\\’ Yexhcer Wave o 3\¥ Ferent
colac. I 6 denoved by K (G).

Ly Cwromovic Index

minimum  nuwvlber ok colovs needed Yo
C0\oY Yne 66%% ok O %Tc»{)\r\ S0 ok every

fwo W eident edores Wove diffexent coloxs .
I s denoved by KN (G).




Ko N(KD=>
Y (K2) = 3
\an V7’
N Vv,
e ( K\\\ = Y KL\
R (KW =% '
V3, Vi

Remoxie: X(Kw) = W.
Proot: Yhere 16 o EAOBQ' bekween evexry

9 vexxices A oo Kw, S0 all the vexiices
should Wowve o Afferent €o\o¥- S¢ Yaere
Should be w  colovre .

Remor k- K'(Kw)= n-\ ik n 15 even
‘)Q‘(FLV\,\:V\ d wvn e 0dd




Remox - %(KV\.V\/\\ = 2

P‘.oo?: A.' ] o o O —— CO\OY‘ 1.

6‘. e o ] . o » CO\OY 2

e vechices Ja the same seb com have the
sayme  coloy because ey oxe woY aé'sacem‘r

Reomoxk . 10 (Knivw) = Mox (n, m) .

EXNV\\?\P, '

A (Ka,W) =2

Ka,y
% R'(Ka, ) = 1\

Remork: X (Bawa) =2 8% vor all vechices
are s0\aked .

Remoni: X (Cw)y=2 F wn s even
YW =2 Fn is 0dd

YU(CWY=2 % n 15 even
CCwWy =2 i n is 0dd

Proot: & Cw has evan order, Thok weons
awnbes of edges gue even, whidh wieons
S o Bawm .



Remaxk: X (PY=92, W' (PA) =2
Proof: every P 16 o Buim.

Remark ® ®'(6) = X(LIB) .

L, Moxi cawm be%ma

denoie.d \03 A(G), ¥ s e waskmwm
de,(b\ru_ o8 o Verkex n G .

Remoxk: X (Bamd= A(Bnm).

Li> Brooke's  heorwm
Lek & be O connecyed  Qroph  sudn

Mok Gz L M8 G Cm for some
odd '.nlceooex m . Then X(G) L AG) -
EXNMP\B .

AKY) = 3 becanse Ky % ‘5—\0:?)%\04‘.
XK = Ay x\ =1

Alln,nvodd) = 2
?C(Cn, W \5 0(&63 = A‘(CV\:V\.‘s OAAB'\'\-'_‘ 2



G G s not Kow
v, - V2. G e nox Cny i 0dd
v Ve AMG)=73
R TORE
Vy 2
X(GY=13

Remonric . N CKw) = A(KA) +\
R (Cny i 0d8) = A (Cp,wnis 0d8) *\

Remork : mimimuwn %\(637/ AG)
moximwm W (G) = A(6) ~ \

Remork . X'() =8 o WG =AX\

QA Whew b R(G) = A +\ ¢

Ah When L= KHw ox L(6)= Cw,
W is 0dd. (Brooke's Yheovem,

plus R'(Gy= LIGY Yeoram).




Remouck: N'(Kinw) = R(Kn)y =W -

Exomp\e -

G w ey R = ALY =D
N

Vo

Exow\‘o\e'.
G/G\
Remask: & G s ot connetted, R'(G) wii\

be e wor X' Fom all compovienks.

K(GY will be We wmor X o al\
compowe)/\ks.

()= ALY =3

Ke)moxk-. IF G ¢ cownnected, ond K—r‘esu\ar
ofF ordexr vi, where N 15 0dd, en
X' = A() ¥ \= Kx\.




Remork: For & dree T, R(T)=2, and
XI(T) = AT

Ly Planar Graphh

0. Coanecred émpla G is called
plamoxr  F iF coan e draunn owvt o
piece ol poyper o Mok e eécoe/:
only wlersect or e verhices.

Examp\e.:

A ]

ALs0 PLANAR
PLANAR (looks like @ isn't)




L Faces of Planoxr Grophs
o Soce hos Yo Ye a cucle thak cannol
be divides into smaller cycler- By defouly,
exexy  planaxr %rop\n hos a Tavial Soce
coNed Me A-Yoce whdh s e entive
poper

Example:
\
K N\ M V\’Vz"v'-\ —\\
H Face 2 V, = Va4 = Vy—V,
Foce 3+ Va—Va =V — Ny
Va, Vi Trvial:  dhe whole papex
PLANAR
E xomple: .
N
Foce 1 Vz‘Vﬂ‘,’Vl.\"Vs—\/z_ Vo p N
Foce 2° v, - Va2 = Ve ~Vy —Vz Ve Vy
—Vg =\ ‘
Wiviod® the whole paper Ve n ® Vs,



Yoce L+ V-V - Vg -V,
Foce 2 No—V3—~Ve—Ng -V,
Foce 3 Vg, -V3 - Ng — Vs
Teivia\® the whole poperx

PLANAR

\/g Ve

Remoxk: Lex G be o connected pPlonax
ron of order \ gnd 51z8 wm and §
awmber of Foces. Them [ n-w v+ § = 2

?\foo? © Asswme e reswY is e foc oo 9\00{\00(‘
gcmp\r\ of ovdr \ and sze - Tole Cq
0S5 O e,mm\o\e,-

A 2-% + L= v



H-4+2=2 VvV

5-5x 2= L v’

A S-6x3= 2 V

1t we odd a new edcbe, we pill add o
new vexrkex, 50 wno c_\r\OA(\%e. \F we odd an
eécbe Yo an existmo Vorkey, we will Formn
anothe v “\C’\Q' ond tonSCO\VMH\i. onathex Soce .

S0 e fowlo m-waa® =2 s ol
Iewe -




Remarxk: Asswme G s plonow, of order v
ond size w. “Then (28 <9wm |

M Asswme eothh Foce consisks ofF Ca.
The sefaultr Toce has ol edoes ot G.
Thenr 285 2w .

Remark: Assume (i plomor, of omder n
ond size w. “Them [wi £ Bn-b
Poof: -+ $ =2

V‘—VV\*-Q-_V_VL)/?_,
£

3(n-w v 9—'—?>W—\>>/6

?)\r\-6>/ VA

Remaxk: We could hooe a. Grapin Mok
sokisfies Wi < Zw-6, Yk W e wok planar.

Exoomp\e )

K, Wer i shill sakishies
" M m<3n-6 .
NoN -PLANAR qQ<36)-6=\12




Remaxk: Asswme G 3¢ Plownaur, of ondex n
g Size w ond 3\(‘\-\:\ K, K>2 k¥ 0.

Wen [KE<awm |

Q' Show Phok Kaz 18 non-planox.

A: Asswume Kaz s planax. Thew:
N-m =+ L =92
2-9+ F =9
L =5

G\r\-\r\(Kg@: L, hkeonce LBEL Qv
Bur W(o) i Q_(C\\:.—\% . Contvadiction.

Reomarxk: R 1o p\oonox & 2< <y .

Q: Comimee. wie  thok Ke s von-planar.
A. For Ks. Wm=\Q, n=95.

\s vv\sBV\—(:,’?_

\0 $ 2(5)-6 = 4

_\-\?\ws Kg s ok Q\MO\X‘




QU Vs Ka o plosox ?

A Asswve ks plamor. Them
n-w x &£ = 92
HW—-06 x— = 79
F=3
Gt (K3 0y=1, honce BEK 2w .
W(3) L 2(0) =12 s sakisSied.

Butr Pis s naot emoug\/\ o prove itis
planor, loecamse eXon o now - plaviasr
oyapin Wk 60~\—i3‘?-x3 these ec‘uou\-lovxs-
Lek's See & We con  aw -

Y NS

Ks3,2
e Wer, & s p\cmc»r‘,

Vo, Vi




Romark: Kam, whwre A23 w> 3 s
VIOV — D] QO

Pfoo?'- Kglﬂa & O~ 5Ub°l)f&YJV\ oF Kn,wr whan
“23, s - We already pfoveA Ko,z 1o
non-p\ow\wr-

Q: \s Pelersen Grogph plowar
A Asswme W s planax. Them -

PC'C N n-wm x & =19
By et
Vs Vo
N V
N

b=

A
NEY
¥ X Gt (Pek) = 5, hRence

Ny "y 58 < 2w . But
No\ -P LAVAR 5(F) £ 2(19). Covtyadichowt -

Pomaxk: Ry ond Qz are plonar. Buk
Qu, N 4 & non-plonax.



Lp Subdivision  Grapin

Examp\e

v b 3 LAY

C7 Su ((7 Ve

Vo
V"\ 2 V"\ V¢
Vs Vo
V3 V?>
SUBD\VISION

Ly Hurodowski's ~Theorom

A connecked %‘(Q)()\/\ G ¢ p\cmax €5 (5 does

vox have o subgrc»p\n Mok & & svubdivision
o Kgﬁ or Kg .

Example:  Qu s wor planarx.

s weans W WosS o S\A\ocsmp\/\ ot s
oo subdivision of Ka,z or |c.

Ne wil show ek F lhos o éub&mp\,\
Fok 15 o swbodwision of Kaa,.



0000 1010 100\

N

0100 o 110} 0001

0011

1000 1100 0010

SUBDWIS\ON OF NKz,2

Remork: b ain(6) =4, and G is planon,
e wm g 2n-W

Poof: n-vw+ $ =9

Q \s Qu o ?

Ay ¥ (Qu) =Y n(Qu) = 2% = \b
() = 4.2 = 3%

s mg2n-12 32 L 2(w)-U = 28
WMo % S wof \o\omoor.



Remoxk: Hw,2 s plonar for oy W -

Proot: Hwn,2 wi\ never have o
suboraph Haok S & subbdivision of
Kaa oY Kg’,. (KWQ\'O\NbK"s T\-neore)/\/\)-

Exom ple:

Q Show G s wnar planox.
A. Y:‘\(s\— we \'\ﬂ\)) RIS\ 7 \BV\Q S;OY‘M\A\OKS-

wy: m < 3n -6

A4

wm= W3 _ g since ¥ (S L\—‘mgu\ar_
2

19 £ 3(a)-6 = 2\ Sokiskied.




Tro e 2F < 2w
V)

V\—M-\—¥=‘2-
A-1p +§ =2 — b=\
3(\\)\ (\8)

3 < 34 Sakiskied.

Swce We Formulas e soXiskied, we
vwvove 0w X9 Kuxo_\—owsk'\’s T\/\eo\(&m.

By Kurakowski's Taeovem, (G should
Wave o subgvophh tak 1S o subdivision
o Kaa.

N3 Nz

>14

V, Vg

Thaefove G s vok plowar.



Ly D\;\,\Ls\rous A\ o\vov'\\\m

Conshruck & tyee %0 ™ok Yhe we,iﬁh\-tc\ potin
vetweoin NUY 2 vuchices ' WU

Examp\e -

N H
A o
C oo
D |- by | — [[We 5p|10p tp |
E [=|6n| — | —|[50][W0p| e |
S [- [leol| = | = | = |V0p|Ce |0
Gl-|=|-|—=|-1%]6e 26
Fl=1—--|=1—"1%]| - [W¢
H{-[=-|-[=]-[=]=[We




Ly K-todror

G(\I.Eﬁ & connected . A .’>POW\V\'\V\% su\o%vo_‘o\q
B Mo s K-veauler s called k- Fackor

of (5.

G Does Cg hove o \-Factor subgrqp\/\?
A No.

Vi

H= {V\'Vz ,\13—\/..\%

Vg iS W\}ss‘\V\S-

\s Vs

Vq

Q) Does C, hove o \-Fackor subaraph?
A Yes.

\p Nq H = {V"V?- |\I3“VL\:



Remark: 0 tonnethed gropn of order w

has 0 \-Fackor sponning  suooroyh (8K
ik Wos o pex\\—u\— mo\\-(‘g\'\ng-

L ldea Behind K-Factor

ExooN\P\e,'.
e o R, H,
<=1 @& >
1 Yackov 1 factor
Ky M, ",
- 1111 @ X X
1 Yatkov 1 factor

H3 Hy
® > & =

1 ¥atrov 1 factor



V. v
o Ay

VL\ Y VL\ VB

1 -Sockov 1 -Sockov

heomork: Pelercan comnot be sphit o
“\i \)(2| Md \*3 ’




Remaxk: Ke o does ok lhave a sparning
Su\o%\rm()\/\ Moy 19 k—mju\ox, K 5 odd.

Proof: Asswme B is spanning subqraph

Hak s K-vegulor
Zdeg (M) = KON = 2| En
Thus, k covmvoy Ye o0dd.

Ly K- Sachroralole

o connecled groph G s called
k-Coctovople % G = ‘-\\6') Hz@ cee p‘W\
whare egachh Bl e oo K-fackor of 6.

Coniechure (Open Provlem)
Asswme G i connecled K-reqular of order
n= IWN.

@18 Wis 0dd amd kzW, Wen G s
1 - fackorab\e.

@15 ™ is even and Kz h-\, then G is
1-Factorobol\e .



E\LMp\e:

IKy0 Ly 2-requiox

M Y w=2W  4=2(2)
LV K2|2 - “\\ @ \’\2_
A-Cockov A-Cockov
Remoxk: . Ky s 1-fackorable.

Kn,w: R ® \Ag_ @ 1"\5@ o Rw
where  eac\a \-\'\ 13 1-¥O~L*0T0~b\e-o

Remark: LeX G e convipeled oF ordex w
G hwos & 2-%alhbor su\o%rop\n wF G has
o  Hami¥onan C\ﬁc\e.

Proot -

—> Asswve G has a 5PMV\M3
Z—mcsu&\or svbarop\r\- hein R=vi- Vo Vot
e means G is Rowmiltonian, with R = C,..

«— Assume G is NamilYonon. Then Cp is o
SPONVINOy 2—m%u\wr suogrouph of G.




Ly Remarr k- Kwwm hos o 2~¥ac*o‘{ Hub
n=w (snee Wi\ e Hamlkonany -

W Romork:. Kn, w3, hos 2 -Yochoy.

Q15 Ky 2 -Factoralo\e ?

A Ky ,n = H\ @ Rz
(where eoath Wi g 2-¥QC\'O\’)

Ko, H, (Ce)
D3 = W@M

Ly Specrrm of Adiaconay Modrix

Remork: |+ A s s\svnme,\'r\'c_, than  al
tiguavolues  OF A are veal. Thus, all eiﬁey\—
Valves 0F o MSQCP/V‘C‘Q moxix of o Smf)l"
G owe veql.




Remoxt: For o nxwvi wiodvix &, ol s
o e,\?)mva\w, of A. 4 a Po\V\\- +

(0,0,0-- 10 such that P\[Ml o([al

Awn

Ramark:. po s onm eqenyolue o ady (Kn).

Exomp\e:

' Y\ V2 Va \u

wl ot

A= Y21 1y o Vv |

Vs [ v + O |\

Ny | VY V0
K — ‘ —

A AA\) UL'—O
o L VLT 3 \
] O \ \ = % = ?) :
'\ v O |\ \ 2 |

vy o [ | S _ I

Tauws, H=3 s an ?J\%emxra\v-&-



Remwork: To Sivna otwer eiﬁmvot\ues,
cex | xTn - ad\'\(KvB\ =Q.

R S SO

. -1 X =\ .=\

X—E‘V\~ a'A\)(KV\\: S WV S |
BN B O

\& we seXx K==\, \X-Iv\_ad\'\(KV\\\'—‘Q.
S0 Ywe e\%@/\\/a\v«u oxre wv-\ ond —1\.

Rewark: Characrershic POl\y)om\a\ of
Ms(‘(v\\ = (X—(Y\ -\3)(3(\-\)""\

Romark: Siaenvaluer ok aé'b(lky\) e

-\ N\PQ&\-&A (v-\) hmes ond wn-\ mpeai{a
on Ce -

Remar k. Charadecictic POltﬁnom\a\ of
MSCKV\IW\\ = (Xz—ﬂVV\\ X“*M_Q‘




Remark: Sigenvaluer o OLA'G(_KV\,W\B ore
0 vepeoked (nrm-2) hmes ond Jnm and

—{nm .
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MTH418 - Graph Theory

BY DARA VARAM

Instructor: Dr. Ayman Badawi

February 1st, 2021

Graphs: A graph consists of the following. G=(V, E) where V is the set of vertices and FE is the
set of edges. Most of the semester, we will be dealing with undirected simple graphs.

We usually refer to vertices by dots, such as the following: e. Every graph consists of both vertices
and edges. Let us look at an example of a graph.

U1

U2

V3

A vertex is each of the vy, v9, vs shown on the graph above. On the other hand, an edge is a line
segment that connects two vertices. In the graph above, we have three vertices and two edges, and
they are denoted as follows:

E={vi — vz, v1 —v3}
We could also use the following notation to denote edges: E = {{v1,v2}, {v1,v3}}. In our case, we
have that |[V|=3 and |E|=2.

What do we mean when we say that a graph is undirected? It means that there essentially is no
arrow. There is no difference between v —v2 and vs —v;. Later on, we will see examples of graphs
that are directed. In that case, the aforementioned edges are distinct.

What do we mean when we say that a graph is simple? Vertices do not have loops, meaning that
they do not go to themselves, and there is only at most one edge between any two vertices. Let us
see an example of a graph that is NOT simple.

U3

U2

Clearly vg goes to itself and there are two edges between vs and v;. Therefore, our graph is not
simple, although it is still undirected. Consider the following graph:



V4 1

U3 U2
Clearly we can see that we have G=(V, F). By staring, we have that this graph is both undirected

and simple. The sets are given as follows:

V = {v1, va,v3,v4}
E = {v1 — v2,v2 — v3, V3 — V4, V1 — Vg, V1 — U3}
Clearly it is obvious that |V|=4 and |E|=5.
Consider the graph shown below:

v
1 Vg

Vs

v7 V4
U5

In general, the degree of a vertex v; is the number of edges that are connected to it. For example,
we have the following: deg(v1) =3, deg(v2) =2 = deg(ve). We also have that deg(vs) =deg(vs) =
deg(v7) =1. Finally, deg(vs) =4. These are the degrees both each of the 7 vertices in our graph.
Note that, once again, the graph is both simple and undirected.

Now, look at the example provided:

V2

Then we have that deg(vs) =0. Note that 0 is an even number.

Fact: The sum of the degrees of each vertex in a graph is equal to 2 times the number of edges.
Mathematically:

Z deg(v;) =2 x |E|
i=1

Similarly, we can rearrange this to get the number of edges in a graph: |E|= w.

Proof: Since each edge is counted twice and calculating all the degrees, then we can divide by 2 to
get the number of edges. This should be common knowledge in graph theory.



Question: Let K be the number of vertices that have odd degrees. Convince me that K is an even
number. In other words, what we are trying to say is that we cannot have a graph with 6 vertices,
where deg(v1) =1, deg(va) = 3, deg(vs) = 1, deg(v4) = 2, deg(vs) = 4, deg(vs) = 2. We cannot have
such a graph. Why?

Clearly we can see that our K in the example provided is 3. If our claim is true, then this example
cannot result in a graph.

Solution: Since the sum of the degrees is 2 x | E|, then it must be an even number. However, if we
have an odd number of vertices with odd degrees, then we cannot have an even number as the sum.
Let us take O = {set of all vertices with odd degrees} and NN = {set of all vertices with even degrees}.
Mathematically, we have that:

Z deg(v) + Z deg(v) = Z deg(v;) =2 x |E|

veO vEN

Thus the sum of the degrees of vertices from O and N must produce an even number, and there
we have our solution.

Look at the graph below:

Us
vy
Py V2
.
4 v

Our question is to find the distance between the vertices v; and vy. i.e. Find d(vy,v4). Note that
this is an unweighted graph, meaning that the edges do not have a numerical value associated to
their “weights.” In that case, what exactly do we mean by the distance?

d(v1, v4) = length of shortest path
Paths: Let us take an arbitrary example, between two vertices V' and W.
V— v — V2 — w

A path is a sequence of edges from V to W. Every edge is a path, but not every path is an edge.
For example, in the above graph, we can see that v; — vs — vy is a path, but it is not an edge,
since it is not between 2 vertices. The length of a path is the number of edges you use to go from
one edge to another.

With that being made clear, we can see that there are two different paths between vy and vy, but
the distance is the length of the shortest path, which would be 2.

V1 ——Us — Vg

Look at the following graph:



U2

V1
U3

N

We can see that d(vq,v4) = 3. Between every two vertices, there is only one path. This means that
there is only one direction you can take. This is not the same as the graph before this one, where
there were multiple paths to take.

February 3rd, 2021

Recall from the last lecture that:

" deg(v) =2 x |E|
=1

Question: Can we construct a graph with the following degrees? 5, 6, 4, 4, 5, 3, 2

Solution: No, we have 3 vertices that have odd degrees (5, 5, 3). From the previous lecture, we
know that we cannot have an odd number of vertices with odd degrees. In other words, we need
to have an even number of vertices with odd degrees.

Question: Can we construct a graph with the following degrees? 4, 4, 6, 2, 2, 4, 2, 2

Solution: We have an algorithm that we can use with any graph to see that if we can construct
it. We can use it for any question of the above type. This means that we can use it for the first
question as well, even though we knew that we cannot construct that graph because of the fact
that we had an odd number of vertices with odd degrees. This is the Hakimi-Havel Algorithm:

1. Arrange the degrees in descending order. In this example, it would be: 6, 4, 4, 4, 2, 2, 2, 2

2. We select the next 6 degrees after the first one and reduce the degree of each of them by 1.
This would result in the following:

6,3,3,3,1,1,1,2
3. If we can figure it out here, then we stop. If not, we remove the vertix with highest degree,

and repeat the process (arrange in descending order). First, we take the next 3 degrees
(after removing the first), and so on.

3,3,3,2,1,1,1
2,2,1,1,1,1
1,1,1,1,0
1,1,0,0

Clearly, at this stage, we can see that we can construct a graph with degrees 1, 1, 0, 0. It would
look like the following:



U3

T . v4
1 Vo

Therefore, we can conclude that since we have created a valid graph of the reduced form, we can
create a graph with vertices of degree 6, 3, 3, 3, 1, 1, 1, 2. This is the idea behind our algorithm.
This algorithm works for simple, undirected graphs.

Where do we stop? When we see a number become negative, then we can quickly see that we have
to stop the algorithm. By another logic, we can also stop when we have something like a vertex of
degree 1 and every other vertex has degree 0. In that case, it would be illogical and we obviously
have to stop.

Question: Can we construct a graph with the following degrees? 4, 2, 2, 0, 2

Solution: We apply the algorithm to the degrees:

4,2,2,2,0
1,1,1,—1

We immediately stop because we have a vertex with negative degree. Therefore, the answer is no.
There is no graph with the mentioned degrees, by the algorithm we have used.

Def.: Connected Graphs: A graph, G = (V, E) is connected iff there is a path between every two
vertices. Consider the following example:

U1

Vg
V2

Vs

VU3 V4

Our graph is clearly connected because there is a path between each of the 6 vertices. However,
note that this doesn’t mean there is an edge between them. Recall that every edge is a path but
not every path is an edge. Consider the following two paths:

Vg —— V3 —— Vg — Vs — Vg

Vg ——V3— VU4 —V3— Vg4 — VU5 — Vg

The difference between the two (in the example shown above) is that the second one has repeated
vertices, while the first does not. This is the difference between a walk and a path.

Path: v1 — vo— ... — v, is a path. All the vertices are distinct except for v; and v, (They could
be the same, which would make it a cycle). This means that we do not go through a vertex more
than once in a path.

Walk: There is no restriction in terms of the vertices we visit. Vertices may appear more than once.
In other words, a walk is a path in which vertices can appear more than once.

Def.: Cycles: Consider the path v; — vy — ... — v,,. This path is a cycle if we have that vy =v,.
In other words, the path starts and ends at the same vertix. Note that this means v; is a repeated
vertex, although this is not an issue. It is still a path.



Consider the following graph:

V3 vy

V2

In this case, the following path: v; — vo — v3 — v; is a cycle. Now consider the sequence:
V1 — V2 — VU3 — U4

This is obviously a path. But it is also a walk, because every path is a walk, but not every walk
is a path. Now, to demonstrate a walk, consider the sequence shown below:

V] —VU3—V2— VU] — V33— Vg — U5

Since we have repeated vertices, this sequence is clearly a walk and NOT a path. Now, consider
the graph given below:

U1

V9

Vs V4 U3 U2

This graph is NOT connected, because we don’t have a path between each two vertices. However,
you can observe that there are two components, each of which are connected graphs. In other
words, this graph actually consists of two connected subgraphs.

Def.: Complete Graphs: A connected graph is called complete iff every two vertices are connected
by an edge (Not to be mistaken with a path).

The difference between a complete and connected graph is that the complete graph has an edge
between every pair of vertices, while a connected graph does not necessarily have this. Further-
more, every complete graph is connected, but not every connected graph is complete. Observe the
following examples.

V1 (%]
U1 V2
V4 U3 Vg U3
Connected but not complete Complete graph with n vertices



Notation: A complete graph with n vertices is denoted by K,. For example, K4 is a complete graph
with 4 vertices. This is the same as the graph shown on the right.

We know the following fact: In a complete graph, K, each vertex has degree equal to n — 1, where
n=2.

February 8th, 2021

Trail: Every trail is a walk, but not every walk is a trail. In a trail, you have to visit every edge
once, but we cannot visit the same edge more than once. In walks, we can (obviously) visit edges
more than once.

Recall the Hakimi-Havel algorithm: Where we check to see whether a sequence of positive integers
form a simple, undirected graph.

Def.: Subgraphs

Consider a graph G =(V, E), and another graph H = (V4, E1). We say that H is a subgraph of G
iff V1 CVand Fq C E. Consider the following example:

e <
\ U1 V2 ~N
» » \

\
~/ - |
- -/
Us
U3 G V4

Consider H to be the part of the graph consisting of v and wvs. Is H a subgraph of G? Yes, because:
{v1,v2} C{v1,v2,...,05} and E1=¢pCFE

Now, look at the following graph:
" -//.*§\\\\

U3

Vg

Is H a subgraph of the original graph? Let us look at the two conditions.
vr={v1, 03,04} CV,but E1 £ E

Therefore, H is NOT a subgraph of G.

Def.: Induced Subgraphs



Consider the graph G=(V, E). We say that H = (14, E) is an induceed subgraph of G if the two
conditions hold:

1. H is a subgraph of G
2. ec I iff e€ E, where e is an edge.

Consider the following example to understand the second condition:

U1 U1

G

U3 U3

We have that H is a subgraph of G but it is NOT an induced subgraph. Why? If v; and vs are
connected in the original graph, then they must be connected in the induced subgraph. Clearly in
our example, H is not induced because v; and wvs are not connected through an edge.

Vs Y (%1

Ve U3

/ h
\

U3

We have that (by staring) H is a subgraph of G. However, H is NOT an induced subgraph because
in G we have an edge between vs and v2. This edge does not exist in H. If we wanted H to be
an induced subgraph, we would have to remove v9 and the edge v4 — vs.

One way to think of an induced subgraph is to think of the same graph, with some of the vertices
removed. Let us look at another example:

G

v
1 Vs

Vg

vy



If we remove the edge vy — w9, then we would have a subgraph H, but it would not be induced
bceause of the fact that we have an edge missing.

Def.: Spanning Subgraph

Consider the graph G= (V, E) and another graph H = (V4, E1). H is called a spanning subgraph
iff V4 =V. This means that we have the same vertices, but the edges can be removed. The set of
vertices in the subgraph is the same set as the original, but this is not necessarily the case for the
set of edges. Look at the same example as the previous:

G

U1

Vg

V4

This is clearly a subgraph, but it is NOT induced. However, it IS a spanning subgraph because we

still have all the vertices vy, va, v3 and wvs. Spanning subgraphs and general subgraphs are easy,
but the only one we need to be careful about is the induced subgraphs.

Recall the definition of a complete graph: A connected graph in which every two vertices are
connected by an edge. This means that every pair of vertices are connected by an edge. Notation:
K, where n is the number of vertices. For example, Kj:

U1

U2
[
V4 4
U2
U1
v3
Vg

Note that both of these are examples of complete graphs with 4 vertices. We can consider both of
them as K. There is however, more than one way of drawing these graphs.

Recall the definition of a connected graph: There exists a path between any two vertices within the
graph. It does not necessarily have to be complete to be connected. We can look at the following
graph:



v
1 v

Vg

V4

We can see that the graph is connected, but because of the missing diagonals, it is NOT complete.

Fact: Let E be the total edges in K,,, with n>2. Then we have that:

n(n—1

(B ="

Why is this the case? The degree of each vertex is n — 1. So the sum of the degrees is n(n —1).
We apply this to the earlier correlation between the number of edges and the number of vertices
to get the above formula.

Def.: Complement of a Graph

G=(V,E). We say that G = (14, E) is the complement of G. Two vertices in G' are connected by
an edge iff they are not connected by an edge in the original graph, G. However,

V1=V but E; =every edge NOT in F

U1 U2 U1 V2

U3 e U3

Where V1=V and E1=9

This is also a spanning subgraph because all the vertices are present and @ C E. Similarly, if we
had the following graph, the complement would be:

V1 V2 V1 V2

U3 e U3

Where Vi =V and E;={vi — vs}

10



This is NOT a spanning subgraph because it is not a subgraph at all. The edge v1 — v3 is not an
edge in the original graph, or mathematically: E; ¢ E.

Let us take another example:

Gl U2 Gl U2
L -« »
G
G
U3 Vg U3 Vg

Fact: Let G=(V,E) be a graph, and let G = (V, E) be the complement of G.

s nn—1
LERLLS

In other words, the number of edges in the graph and the number of edges in the complement we
have the total number of edges for K,. If we combine the edges in G and its complement, we will
have a complete graph. That is what this fact is saying.

Clearly we have that EN E; =@, and EU E; =set ofalledges of K,, = |E| + |E| = w
Question: Ts there a graph with n vertices st |E|=10?

Solution: There are a few ways to do this. First of all, we could have a graph with n vertices and
no edges. Alternatively, we can follow the following formula:

G=K,—|E|
Using this, we would have exactly |E| edges in the complement of our graph. Let us look at the

two ways with an example: If we want a graph st |E|=10, choose any n where "("1; D >10. We
can choose 6 for this case. Then:

G = Kg— 10edges
Therefore G = (V, E) with |E| =10

The complement of the graph consists of the 10 edges that are missing from Kg.

February 10th, 2021

Let us detail one of the solutionsiproposefl for theiproblem in the previous lecture. We want a
graph such that G=(V,E) and G=(V, E), with |E|=10. Look at the following solution:

L] L] L]
. L]
G=(V.E) G=(V.E)
V= {Ula V2, V3, V4, U5} V= {U17 V2, V3, 1]477}5}
E—{o} B|= 10

11



Definition of Isomorphism of Graphs: In the street language, let us consider the question.
What does it mean when a graph, G, is isomorphic to another graph, G2? This may be the fact
that we draw them differently but both have the same graph properties. For example, if G; has 3
vertices of degree 1, then G2 has exactly 3 vertices of degree 1.

In the official language: Consider G1(Vi, E1) and Ga(Vz, E2). G1 and G are graph-isomophic iff
3 a bijective fucntion f:V; — Vi st Va,be W, if a — b€ Ey, then we have that f(a) — f(b) € Es.
Let us look at an example.

U1 Vg (%% Vg

U3 V4 U3

Gl G2

Vg

Are GG; and (9 isomorphic? Both have 4 edges, and both have 4 vertices. However, in G1, v; has
exactly degree 3, while G2 has no vertices of degree 3. Therefore, they are not isomorphic to each
other. Another reason why they are not graph-isomorphic is that G has a cycle of length 3, while
G5 does not.

Let us look at another graph:

U1 V2 w1 wa

wy

U3 V4

G1(V, Ey) Go(W, Ew)
Are G and G isomorphic? Let us construct the mapping.
f:V — W where f(v1) =w;

We know that both these graphs are representations of K. The structures of G; and Go are
exactly the same. Let us think of another pair of graphs.

U1 U2 w1y

v

Ve Wy

12



These are both graphs of order 6, but are they the same graph? Firstly, they should have the same
number of vertices and edges. Both have 9 edges and 6 vertices. Every vertex in both are of degree
3. Since all of them have the same degree, this is one of those special cases where our mapping can
be each vertex to the other.

ffi—VW,

V1 —r w1
Vo — W2
V3 —> Wy
Vg —> W3
Vs —> W5
Vg — We

We make the mapping also based on whether or not the corresponding vertices have edges in
between them as well. For example, vo maps to ws because there exists an edge vo — vg, and also
an edge in Ga: we — wg. Look at the following graph:

h

e

Our claim is that this graph is NOT isomorphic to G; and G2. Why is this the case? Because in this
graph, we have a cycle of length 3 (fo— f3— fa1), while we do not have any 3-cycles in G; and Gbs.

In general, it is very hard to see whether two graphs are isomoprhic to each other. It is often not
enough to each whether they have the same number of edges, vertices, degrees, etc... If you can
find a way to do it, you don’t need to do your PhD anymore. You’ll get a Fields Medal.

Def.: K-Regular Graphs: A graph is called K-regular if each vertex has degree equal to K.

Question: Assume G and Go are of order n, and both are K-regular for some value K. Is G;
isomorphic to G2?

Solution: Not necessarily. It is not always the case, although it is possible. We will look at a counter-
example to show this. Consider the graphs shown above. Clearly we know that G5 in 3-regular
and so is G; and Ga. Furthermore, they have the same number of edges and vertices. However,
we saw that they are NOT isomorphic because of the existence of the 3-cycle in G3. Therefore, by
counter-example, we know that this is not always true.

Assume we have a graph, G(V, E) where G is 5-regular. What can we say about |V'|? Remember
that the sum of the degrees of a graph has to be an even number (2 x [V'|). Therefore, we know
that |V| is an even number bigger or equal to 6.

13



Fact: Assume G(V, E) is K-regular, where K is an odd integer. Then |V| is an even integer
>K+1.

Look at the following 3-regular graphs, used to demonstrate this fact:

The number of vertices on the first graph is 6, while the number of vertices on the second graph
(K4) is 4. Both are even numbers >3, since the graphs are 3-regular.

February 15th, 2021
Question: Imagine we have the following graph G(V, E). Find the adjacency matrix of G.

Us

U1

U2

U3

Solution: The adjecency matrix is simply a matrix in which if there is an edge between two vertices,
we put a 1. If there is no edge, we put a 0. Moreover, if we are allowing loops in our graph, then
we put a 2 instead of a 1 in a loop with the vertex itself.

V2 Vs V4 V3 U1

|0 1 0 1 1
vs[1 0 0 0 O
vg(0 0 0 O O
v3[l1 0 0 O O
vp|l 0 0 0 O

Why did we arrange it like this and not the natural why? We should. But it would be a different
matrix to what we have above. Let us look at it.

U1 V2 U3 VU4 Us

vil0 1 0 0 0
vwl|l 01 0 1
v30 1 0 0 0
vw|0 0 0 0 0
vs|0 1 0 0 0

But why did we do it like that the first time? How many different adjacency matrices do we have?
There are finitely many adjacency matrices for the same graph, but there are a lot. It simply
depends on how we decide to write our vertices. How many different ways are there? 5! different
ways.

14



Theorem: Consider two graphs, G; and G, that are of the same order. G~ G5 iff they have
a common adjacency matrix. This means that out of all the different adjacency matrices that
they have, one should be common between the two of them. G; and Gg can have many different
adjacency matrices. This is a bit difficult to do, however, since we need to consider all the adjacency
matrices of both the graphs.

This is more something that is easier to do with the help of computer programs and algorithms.
Let us look at an example of an adjacency matrix for the sake of displaying some of the properties:

U1 V2 U3 U4
U1
U2
U3
Vg

=)
= o o
= o O

1

1

1

0

If the above is adj(G), then consider [adj(G)]?. Clearly we can see that:
adj(G) = [adj(G)]"

There is no playing around here. We cannot perform row / column operations on the adj. matrices
in order to get something that is common between two graphs. We need to go through each one
and compare.

Unsolved Problem: Consider 2 graphs, G1(V1, E1) and Go(Va, Es), both of the same order. Then
we say that G1~ G iff:

V1<Z'<TL—>(G1—W)%(G2—U¢)

We have to try this for all ¢ between 1 and n. This is actually a conjecture that has not yet been
proved using our current knowledge of mathematics, but we also cannot find a counter-example to
disprove it.

Def.: Bipartite Graphs

A graph G(V, E) is called a bipartite graph iff V' =AU B, where AN B =&, every two vertices in
A are NOT adjacent (not connected by an edge), and every two vertices in B are not connected
by an edge (not adjacent). Consider the following graph:

V1 o U2 V3
A= {vh V2, U3}
B= {1147 Us, UG}
o U4 Us Ve

Clearly we can see that this graph is bipartite. Why is this true? Because there is no intersection
between the two sets of A and B, and each pair of vertices in A has no edge with each other (resp.
in B).

Consider the following graph:

15



V1 U2

U3

Is this graph bipartite? Yes. You can select A={v1,vs} and let B={vs}. Then clearly we can see
that this fits the conditions for a bipartite graph. Now, how about the following graph?

U3

Vg

U1
V4

If you spend the rest of your life and the next, you cannot show that this graph is bipartite.
However, look at the following graph:

v v v
0 - 1 3 5

el
P U3 () V4
Vs

i3} V4

Although we would not originally be able to see, upon redrawing the graph (maintaining the same
properties), we can see that A={vy,vs,v5} and B ={va,v4}. This graph is clearly bipartite. Are
the two graphs isomoprhic? Of course, they are the same graph. This means that they have a
common adj. matrix.

What is the difference between the graphs G and H? First of all, there is one more vertex and
also one more edge in G.

However, the big observation here is that in H, we have a cycle in v; — vg — v3 — vy, which is
a cycle of length 3, while we have a cycle in G with v; — v9 — v3 — v4. This is a cycle of length
4. We will now see the theorem.

Theorem: A graph G(V, E) is bipartite iff it has no odd cycles. This means that if our graph has
even a single odd cycle, then we definitely cannot say that it is bipartite.

Look at the following graph:

U7
U1

V2
V6

U5 U3

16



Is this graph bipartite? No. The reason for this is that we have a cycle:
V] —— Vg —— U3 —— Vg — V7 — U]
This is a cycle of length 5, which is odd. Therefore we know that we don’t have a bipartite graph

by the theorem just introduced. We don’t need to waste our time splitting the vertices into two
sets. This is where we stop.

February 17th, 2021

Fact: A graph is bipartite iff it has no odd cycles.

L]
\
This graph is of order 5. This means that there are 5 vertices. There is a set A, containing the
three vertices on the top, and a set B, consisting of the 2 vertices on the bottom. This graph is

bipartite with the notation: Bs 5. This means that the set A contains 3 vertices, and the other set
contains 2 vertices.

Let us draw Bjs 3. This is a graph of order 8 (8 vertices).

———

Clearly there are many different ways of drawing Bs 3. In other words, there are many different
graphs that can be made to be Bs 3

Def.: A bipartite graph is called a complete bipartite graph iff every vertex in A is connected to
every vertex in B. Consider the following graph:

A

Now, look at the this graph:

By 3

B

This is a graph representing By 3. This is also a complete graph of the form Kj 3.

17



Reminder: When we say that a graph is K,,n > 1, this is a complete graph. On the other hand,
when we say K, n, we have a complete bipartite graph. This is not the same as K,. For example,

if we consider K 4:

Fact: K,, , has exactly m x n edges. If we assume |A|=m and |B|=n, then each vertex in set
A has degree n, and each vertex in set B has degree m.

Proof: We use the trivial result:

Z degrees = Z deg(v) + Z deg(w)

veEA weB
=mn+mn=2mn=2|E|
= |E|= 2";” =mn

Def.: Girth: Consider the graph G(E, V). The girth of the graph, denoted as girth(G), is the
length of the shortest cycle. Recall that a cycle is a path which the first vertex is the same as the
terminating vertex. If a graph has no cycles, then we say that it has girth co.

What is girth(K},), forn > 37 Since there is an edge between every pair of vertices, we know that
the cycle with shortest length is 3. Thus girth(K,)=3forn >3.

Proof: Since n >3, then v; — vo — v3 — vy is a cycle of length 3 in K.

What is the girth of K, ,, wherem=1 or n=1? girth(X,,,,) = 00, since there are no cycles in
the graph. On the other hand, if we have K, , withm,n>2, then girth(K,, ,) =4. This is always
the case. Why is this true?

V1 Vo ’Ug

V4 Vs

Consider the cycle v1 — vg — v9 — v5 vy. This is a cycle of length 4. The girth of K,, , will
never be 3, or 5, or 7... This is because the graph would not be bipartite otherwise.

Proof:
A: vy, 09,03, ..., Uy Withm > 2
B:wi,wq, w3, ..., w, withn >2

Since the graphis K, ,,, then:

v — Wy — Vg — wy — vy isacycle.

Look at the graph below:
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The complement of the graph, Ks s:

Can we calculate the number of edges in the complement of K, ,,? Is there a formula? Recall that
the graph K, , has order m +n. Also recall that:

(n+m)(n+m—1)

| E(Km.n)| + | E(Km.n)| = B

w(w{ Y This is linked to

the above formula. We will use this information to derive the number of edges in the complement
of the complete bipartite graph:

Finally, remember that the number of edges in a complete graph, K, is:

= (n+m)(n+m—1)
m.n D)

mn+|Ex

\Bre,, | = (n+m)(7;+m —1) o
_nP+2mn+m?P—n—m—2mn
B 2

_n24+m2—(n+m)

2

Will the complement of K, ,, be connected? No. There will be no edges connecting the two sets,
A and B. This is because a complete bipartite graph has edges between the two sets only.

Def.: Self Complement Graph: A graph whose complement is itself. We can demonstrate a self
complementing graph in the example below. Another way of saying this is that the graph G is
isomorphic to its complement, G.

U1 U2 w1 w2

U3 V4 w3 Wy
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Are these two graphs (where the right graph is the complement of the left) isomorphic? Consider
the mapping:

f:G—G
V1 — W3
Vg —> W4
V3 —> Wa
Vg —> U1

This graph is a self-complement. How about we have a graph with 3 vertices? Can we have a self-
complement graph with 3 vertices? No. This is never the case. In fact, if we have a graph that is
a self-complement, it always has to have 4 or more vertices.

Let G be a graph of order n st the graph is isomorphic to its complement. In mathematical terms,
we have that G~ G. We know that |E|+ |E| =w.

SinceG~G,|E|=|E|=m
=m+m= 7n(n2— 1) =2m
dm=n(n—1)

n(n — 1) must be a multiple of 4
ied|n or 4|(n—1)
=—n=4Kforsome K >1€7Z
orn=4K +1

For example, if we have a graph of order 7, then we cannot have that it is isomorphic to its
complement. This is because 7# 4K or 4K + 1. However, we can order with a graph of order 5,
because 5 =4(1) + 1. Therefore, a graph of order 5 can be isomoprhic to its complement, ie self-
complement graph.

February 20th, 2021

Consider the following adjacency matrix:

0010
. 0011
AJ@=Ai=1 14 ¢4

0110

The graph that would correspond to this adj. matrix would be:

U1 U3

U2

Vg

Can this graph be bipartite? No. The cycle v — vo — vg — v3 is a cycle of length 3 (odd). A
graph with an odd cycle cannot be bipartite.
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Recall that two graphs can be isomorphic even if they don’t have the same adj. matrices. They
can be rearranged and manipulated through row operations. As long as they have a common adj.
matrix, they can be isomorphic.

Def.: Permunation Matriz: A permutation matrix is an n X n st each row has “1” exactly once.
All other entries in a row are 0. For example, consider the following matrix:

01
01
This is a permutation matrix that is not necessarily obtained from I,,. Therefore we

To apply this to the above, consider the following result.

Result: Let A; be an adj. matrix of a graph G1(V4, E). Consider Ay, adj. matrix for Gy. The
result states that Gy ~ Gy iff Ip (permutation matrix) st p Ay = A p. If we can find some p st the
equation holds, then the two graphs are isomorphic.

Consider:
01001 00010
10010 00011
A=l 00010 |,and Ao=] 000 11
01101 11100
10010 01100

Definitely we can see that as matrices, A; # As. Now consider our matrix p:

00100
01000
p=| 00 0 0 1 |— permutation matrix
00010
10000

We can see that p contains a single “1” on each row (obtained from I5). In this question, A; and A,
are indeed isomorphic. Can we verify this through p Ay = A5 p? Since p is invertible, we know that:
Ay=pAp~*

Def.: Diameter of a Graph: The diameter of a graph, denoted as diam(G), is given by the following
set:

diam(G) =max {d(a,b)|a,bcV and a#b}
This means that dim(G) is the maximum distance between two vertices of a graph. For example,
if we are given that dim(G) =4, then we know that Va,b €V — d(a,b) <4. Note that d(a,a)=0.
For a graph K, , (complete bipartite), what is the diameter?

dim(K,y, ) =2

This is always the case. It is trivial. However, we can see the formal proof below.
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Proof:

We have that A={v1,v,...,vn} and B={w, wy,...,w,}. Choose some v € A and some w € B.
Clearly for Ky, , d(v,w)=1. Now, to go the other way around, choose v € A and w’ € B. Clearly
we can see that v — w’ — w is a path of length 2 for any pair of vertices, v and w.

Similarly, consider K,. We know trivially that diam(K,)=1. Now consider the graph below:

diam(G) =3 =max {d(a,b)|a,be V}

Now consider another example, with the graph below:

diam(G) =2

February 22nd, 2021

Given the following graph, we can produce an adj. matrix.

3
0100
1011
A= 0101
0110
Question: For each vertex, find the degree.
deg(1)=1
deg(2)=3
deg(3)=2
deg(4)=2

We can do this by just looking at the adj. matrix. The sum of the numbers in the row and column
for the given vertex should be the same. This is a simple observation.
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Look at the following two graphs:

Gy 1 Go 1
2 3 2
3 4
4
0100 0111
M=l g o [dd=] 1] g
0110 1000

Our claim is that G1~ G2. Show this, and also show pst p Ay = Asp. Then, using words, show how
we can get Asfrom Aj.

f Gl‘)GQ
f1)=4
f(2)=1
f3)=3
fl4)=2

This mapping will work st p A; = As p.

In another example, we could take some mapping K: Go — G1 where we would have p Ay = A; p.
f and K are the same, but opposites.

Now, let us try to obtain p. Take I;,. We will do the following steps:

1. Ri—~ Ry
0001
0100
0010
1000
2. Ro— Ry
0100
0001
0010
1000
3.R40—)R2
0100
1000
0010
0001

This is our p. We will use a calculator to see whether or not the equality p A1 = A p. It
indeed holds.
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How did we come up with this? Look at the mapping of f. We can see that f(1) =4, so therefore
we take Ry — Ry from the identity matrix I. Similarly, we can see that f(2)=1, so we interchange
the rows Ry and Rs. We continue in this fashion.

Now, we will get Asfrom A; by interchanging rows and columns.

Start with Aj:

0100
1011
0101
0110
1.R10—)R4
0100
1011
0101
0100
2. Ro— Ry
1011
1011
0101
0100
3. Ry~ Ry
1011
0110
0101
0100

Note that when we say R4+ Ro, this means that we replace the current Ry with Ry from the
original matrix, A;.

Let us call this matrix C'. Now, let’s do the same thing but with columns. In other words, do the
same mapping, but on columns. 1st column with 4th, 1st with 2nd, etc.

Start with C'

1011
0110
0101
0100
1.01’—)04
1011
0110
0100
0100
2.02>—>C1
0011
1110
1100
1100
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3. C4H CQ

o= O
o= O =
SO = =
SO O

We can see (after the column replacements) that this matrix is the same as As. For verification:

—_ == O
O = O =
OO ==
OO O
= = = O
S = O =
OO =
OO O =

Def.: Dominating Set: Take a graph G(V, E). A subset B of V is called a dominating set if every
vertex in V — { B} is connected to at least one vertex in B.

Consider the following graph of Kj 3:

3 4 5

Our claim is that B={3,4,5} is a dominating set. This is because every vertex in V — {B}, which
is the set {1,2}, is connected by an edge to at least one of {3,4,5}. We can also see that L={1,2}
is also a dominating set of Ko 3.

Another example of a dominating set in K 3is K ={2,4}. Every vertex in K 3 exlcuding 2 and
4 is connected to one of either 2 or 4.

Def.: Dominating Number: The dominating number, denoted (G), is the size of a smallest dom-
inating set.

Let us try to understand this better through the use of an example. Consider the graph K3 7.
What is the dominating number of this graph?

V(Ks,7) =2
Why is this the case? Take one vertex from each set (similar to the above example with taking
{2,4}). Then we know that the size of this set is 2.

What is v(K1,,)? Clearly this would be 1. This is because the 1 vertex at the top of the graph is
connected to every vertex (n in total) in the second set.

In fact, the general case is that for m,n > 2, then (K, ») =2. To demonstrate the idea of the
dominating number further, note that v(K,)=1forn > 2, since every vertex is connected to every
other vertex in a complete graph.

Consider the following graph:
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2 4

We can see that v(G) =1. This is because we can choose a dominating set, B ={2}, and every
other vertex is connected to 2. Therefore trivially we can see that v(G) =1.

Another graph:

What is v(G)? Consider the set of vertices {2,5,9,13}. These are all nodes in the tree that fall in
between the root and the leaves. Within this set, we can see that every other vertex is connected
through an edge to one of these 4. Therefore, since |[{2,5,9,13}| =4, we have that v(G) =4.

February 24th, 2021

Def.: Size: Given a graph G(V, E), we know that the order n means that |V'|=n. On the other
hand, if we say that a graph G has size m, this means that the number of edges is m. In other
words, a graph with order n and size m =|V|=n and |E|=m.

Def.: Tree: We call a connected graph a tree iff G has no cycles.

Fact: A connected graph is a tree iff between every two distinct vertices, there is a unique path.
There is only one way to go from one vertex to another. There is no other way.

Sketch Proof:

a b a ::: b
We can see that if we want to go from atob in our two graphs, there is only one way to go in the
first one but more than one way in the second one. Why is this interesting? Clearly we know that a

tree contains no cycles. If the path between two vertices in a graph is not unique, we automatically
know that we can create a cycle. Therefore, <=-.

—>AssumeGisa tree. Leta,beV

We shall show that 3! path from a to b
Deny:

Assume p1, p are 2 diff paths from a to b
It is clear that the graph will have a cycle
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(contradiction)

—
Assume 3! p between a, b. Show G is a tree
Deny:

Since G is connected and not a tree,
Jsomecyclevy —vo — ... — v,

which is a path from v; to vy,

But v; — v, is also a path from v to vy,
Therefore we have more than one path
(contraction)

Consider the graph K 5. This is clearly a tree, because there is no cycle within the graph. Is every
tree a K, for some n? No. This is not the case. This would only work if our tree has 1 level.
Look at the following graph (tree):

We say that the tree is B, ,, for some n,m, where it is a bipartite graph. What is our set A and
what is our set B? Since this graph has no cycles, then it definitely cannot have any odd cycles,
which by definition makes it a bipartite graph.

A:={1,4,5}
B:={2,3}
1 4 5
2 3

This makes our graph (tree) Bs 2. Now, is every By, , a tree? No. We can easily produce bipartite
graphs that contain cycles, which renders trees out of the possibilities.

1. We know that K , is a tree, but not every tree is K n;

2. Wc also know that every tree is B,, », but not every graph of the form B,, , is a tree.

Def.: End-Vertex: A vertex v in a graph is called an end-vertex iff deg(v) =1. It is clear that every
tree has at least 1 end-vertex.

Fact: A connected graph of order n is a tree iff it is of size n — 1. This means that the number of
edges in the graph is n — 1.
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Proof:

_
Assume G is atree, weshow that |[E|=n —1
If n =2, thenitis clear.

Assume the result is true forsomen =k, k > 2
Weproveitforn=Fk+1

Assume G isagraphoforder k + 1

We show that |E| =k

Since G is a tree, G has an end vertex, say v
Now G — {v} is some tree order k

By assumption, for G — {v}, |E|=k -1
=|E|=kforG

—

Construct an argument, etc. . .

Question: Can we have a tree of order 8 and size 67 No. This is because the size has to be n — 1,
which is 7 in our case.

Fact: Every connected graph G has a spanning subgraph that is a tree. This is called a spanning
tree of G. Recall that if we have a graph, G(V, E), a subgraph H(V4, E4) is a spanning subgraph
iff V'=V4. This means that the set of vertices is the same (not that 13 C V).

Also recall that H is an induced subgraph of G iff V4 CV and a — b is an edge of H iff a — b is
an edge of G.

G H

We can see that H is a subgraph of G, clearly, but it is not an induced subgraph. Why? Because
we have an edge between 2 and 4 in the original graph, but there is no edge between 2 and 4 in H.

March 1st, 2021

2 3 4 )

This is a connected graph. We say that a connected graph consists of a single component. In other
words, the graph above is 1-component. Now look at the following graph:
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6 7

This graph is not connected, because there is no path between the vertices {1,2,3} and {4,5,6,7}.
Each one of the individual sets are, however, connected. Note that {1,2,3} is an induced subgraph
of G and so is the set {4,5,6,7}. We can say that G has 2 components.

We say that D is a component of a graph G if D is a connected induced subgraph of G and D is
not a subgraph of a connected subgraph of G.

1 6 7

4 5 8 9

Is H a component of the original graph, G? Note that H consists of 1 — 2 —3 — 1, and is
definitely an induced subgraph of G. However, it is not a component, since H is a subgraph of a
larger subgraph of GG. Therefore, it cannot be a component. G in our case has 2 components.

Def.: Eccentricity: Assume that our graph G(V, E) is connected. Choose some v € V. The eccen-
tricity of v is denoted and defined by the following;:
e(v) =max {d(v,u)|ueV}

1

e(1) = max {d(1,2),d(1,3), d(1,4), d(1,5)}
=max{1,1,2,3} =3
Therefore we have that e(1) =3
e(2)=3,e(3)=2,e(4)=2,e(5)=3
What can we connect eccentricity to? The diameter of a graph.
diam(G) =max {e(v)|veV}

We define the radius as the minimum eccentricity of all the vertices in a graph. Mathematically,
we say that:

rad(G) =min {e(v)|v eV}
In the example of the graph provided above, we have that the set of {e(v)|veV}={3,3,2,2,3}.
We take the minimum of this to obtain: rad(G) =2.
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The natural follow up question would be: If a graph is not connected, how would be calculate the
eccentricity?

e(i)=o00 VI<Li<T7

This is because you cannot get from (for example) vertex 1 to vertex 7.

Def.: Path Graph: Consider the graph v; — vo — ... — vy, where v1,..., v, are all distinct vertices.
Such a graph is called a path-graph of order n, denoted P,. This graph is clearly also a tree since
it does not contain any cycles.

Question: Let n > 2. What is the size of P,?

Solution: Since we know that a path-graph is a tree (of order n), then clearly, from previous result,
we know that the size of P, isn—1.

Another approach to the proof:

V] — V2 —U3— ... — Uy
deg(v1) = 1 —deg(v,)
deg(v;) =2 Vi<i<n
Z degrees=2 |E)|
2(n—2)+2=2|E|
2n—4+2=2|F|
2n—2=2|E)|
|[E|=n-1
Is P, a bipartite graph? Consider Ps=1-—2—3 —4 —15. Then we can split the vertices into
two sets:

A=1{1,3,5} and B={2,4}

2 4

What is the dominating number of Ps, denoted v(P5)? The smallest dominating set is {2,4}, and
thus v(Ps) =2.

Def.: Cycled Graph: Assume we have a graph 1 — 2 —3 — ... — n — 1. This is a cycle, for
n>3. A graph in this form is called a cycled graph, denoted by C,. This means we have a cycled
graph of order n. For example, C5:1 —2—3—4—5—1. C,, cannot be a tree (because it is
literally a cycle).
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Is C5 a bipartite graph? No, because it contains an odd cycle. What about Cg? Yes. This leads
us to the result: Cg is a bipartite graph iff n is even.

Ce=1—2—3—4—5—6—1

2 4 6

What is v(Cs)? 2. Choose {1,4} or any pair of vertices not in the same subset for the bipartite
graph representation. Clearly we can see that every vertex outside of {1,4} is connected to either
1 or 4. Generally, dominating number problems are considered hard in Graph Theory. The first
thing that you may think in that graph is that v(Cs) = 3. However, since 6 is connected to 1, this
changes everything.

In general, v(P,) = L%J How do we calculate the dominating number for C5? There is no formula
for this. However, look at the graph for Cs:

1—2—3—4—5—1

Take the set {2,4}. Every vertex outside of this set is connected to either vertex 2 or vertex 4.
Thefore, we know that ¥(Cs)=2=|3|.

2
What about v(C7)?
1—2—3—4—5—6—7—1

Take the set of vertices {2, 4,6}, every vertex is connected to one of these three. Therefore,
Y (07) =3.

For even n, this idea of the floor of % would not work. Consider Cg:

1 3 5 7

2 4 6 8

A dominating set for this graph: {1,4,7}. Every vertex outside of {1,4, 7} is connected to one of
the three vertices. Can we make a smaller dominating set? No. Do we have a formula for finding
~v(Cy), where n is even and n >47?

forn >4, even, v(Cp) = g -1

March 3rd, 2021

Recall the concept of a dominating set: Assume we have a graph of order n. A set of vertices,
D ={v1,v2,...,0m}, where m <n st every vertex of the graph, G, outside of D is connected by an
edge to at least one vertex in D.

Furthermore, the dominating number is the size of the smallest dominating set. This is all explained
in street language for ease of understanding.
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Consider the graph, Py:
1—2—3—4—5—6—7—8—9
What is y(Pp)? It is the smallest dominating set of the graph. Consider the following set:
{2,5,8}

This set is the smallest dominating set of the graph Py. We can see that everything outside of the
set is connected to at least one of these three vertices. Therefore, since the size of this set is 3,
then ~(Py)=3.

Now look at the graph for Pjs:
1—2—3—4—5—6—7—8—9—10—11—12—13—14—15

The smallest dominating set for this graph is: {2,5,8,11,14}. This means that y(Py5). We can
form the general case formula for P,:

= [4]

What do we expect the value for v(P7;)? We take [g—‘ = 3. Another question: Find v(Pi;) and
construct the smallest dominating set of it:

A(Pr) = Hﬂ —4 and {2,5,8,11}

1—2—3—4—5—6—7—8—9—10—11

Application: Imagine we have a computer station, we want to hire hackers. What is the minimum
number of hackers we need to be able to hack all of the computers in the work-station? Where
do we place them in order to connect to everyone else? This is a very good way of explaining how
the concept of the dominating number and dominating set works. We can use any other example
of this line of thought.

Consider the graph C,. Would the dominating set be the same as P,, or would it be different?
Look at the graph for Cy:

4 3

What is going to be v(C5)? It will be 2, because if we look at 1 —2—3—4—5—1, we can
see that by selecting the set {2,5}, everything outside the set of vertices will be connected by an
edge to either 2 or 5. The general formula:
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Def.: Strongly Dominating Set: The set is a dominating set, and every vertex within the set should
be connected to at least one other vertex in the set through an edge. This is more complicated
and is a rather new area of research.

Consider the following graph:

6

What is 7(G)? Clearly, we don’t need a formula for this example. We can see that every vertex in
the graph is connected to either 7 or 1, meaning that we select the set: {1,7} as our dominating
set. Therefore, v(G)=2. Another example:

What is the smallest dominating set of this graph? Choose {1,5,7}. Done. We can consider more
examples:

8 6

In this case, we can choose {1,4,10}. Can we find a dominating set with the vertex 77 We can
see that the vertex 7 has the highest degree, but we cannot find a minimum dominating set with
it. This goes to show that the vertex with highest order is not necessarily the vertex that would
produce a minimum dominating set. A dominating set with 7: {1,7,5,9}.

One last example:

5 6
We know that v(G) =2. Choose any of the following dominating sets: {1, 6}, {3,4},{2,5}, ...
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Result: Every connected graph has a spanning tree.

Let us sketch the idea before we move on to the actual proof: We can start with a cycle.

If we have a cycle and we remove an edge, what kind of graph will we have? We will have a P,
graph. In a cycle, C,, —e= P,,. The graph will, however, stay connected. We will have the same
number of vertices but the cycle will become a path. This is what makes it a spanning tree. Recall
that spanning means that we have the same vertices, and tree means that we have no cycles. That
is clearly visible through our sketch.

€9 €1 €3

We can see that by removing e; and es from the graph on the left, we have removed all possible
cycles from the graph, but we are clearly keeping the same vertices. Therefore, we have constructeed
a spanning tree. Thus: G — {ey1, e} is a spanning subgraph, which is a tree.

Is that the only spanning tree, or can we find others? Remove the edges e and es.

€2 €1 €3

We can see that the two removals produce graphs that are not isomorphic to each other. In the
example just shown, we can see that we have vertices of degree 3, but none of those is the former.

Def.: Cut-Vertex: For a graph, G(V, E), consider the vertex v € V. We say that v is a cut-vertex
of G if G —wv is disconnected. This means that when we remove a vertex, in our case v, from the
graph, then we also remove all the edges that are connected to v.

Look at the following example:

1 2 2

4 3 4

If we remove the vertex 1, the graph is still connected. Therefore, 1 is NOT a cut-vertex of G. In
fact, there is no vertex in G that is a cut-vertex. The graph will remain connected regardless of
which vertex you remove.
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March 8th, 2021

Let us go back to the concept of cut-vertices. Consider a graph G(V, E) — connected, order n,
size m. Take a vertex, v €V st deg(v)=1. Will it be possible that G — v is disconnected? No. Why
is this the case? Let us visualize.

The vertex v is not connected to anything other than w, since deg(v) =1. If we remove the vertex,
then we only remove the edge w — v. Therefore, no matter what happens on “the other side” of
w, the graph cannot be disconnected (worst-case: w and v are the only vertices of G, removing v
automatically leaves us with a single vertex w, which is connected).

By removing v, we have the graph G — v, which is connected and of order n — 1 and of size m — 1.

Fact: If v is a cut-vertex of a graph G(V, E), then deg(v) > 2. Note that this does NOT mean
every vertex of degree 2 is a cut-vertex. Recall the square from last lecture: each vertex is of degree
2, but none of them are cut-vertices. Let us look at another graph:

5

4

Is the vertex 2 a cut-vertex? No. If we remove it, the graph is still connected. What can we observe
about vertex 2?7 Look at the graph of Pj:

1—2—3—4

If we remove the vertex 3, then it will be disconnected. Therefore 3 is a cut-vertex, and deg(3) =2.
The vertex 2 is also a cut-vertex, by the same principle. This will lead us to the following result:

Result: Let G(V, E) be a connected graph. v €V is a cut-vertex iff 3w,z € V st every path from
w to z passes through the vertex v.

Consider the example graph shown below:

1
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Is 2 a cut-vertex? You can observe that every path from 3 to 1, from 4 to 1 and from 5 to 1 passes
through 2. We only need to find ONE pair of vertices (note that the result says THERE EXISTS,
not for every). Therefore, 2 is a cut-vertex. Another way of looking at it: Can we find a path from
3 to 1 without passing through vertex 27 No. Therefore 2 is a cut-vertex.

One more example:

) 4

Is 2 a cut-vertex now? No. Because we can find a path from 3 to 1 that does not pass through 2. In
fact, the method to proving that it is not a cut-vertex is to remove vertex 2 and show that we can
still traverse between any pair of vertices. i.e. G — 2 is connected, and hence 2 is not a cut-vertex.

Sketch: =Assume v is a cut-vertex. Show that Jw,z €V st every path from w to z passes through
.

Proof: Since v is a cut-vertex, G — v is disconnected. This means that there exists at least some
w and z €V which are not connected through a path, by the definition of a disconnected graph.
Therefore, every path from w to z must pass through v.

<= Assume Jw, z € V st every path from w to z passes through v. Show that v is a cut-vertex.
This is trivial.

Def.: Bridge: An edge, e, is called a bridge iff G — e is disconnected.
Rmk:

e If the graph is of order n and sizem, and if v is a cut-vertex, then G —v is of order n — 1
and size m — deg(v)

e If eisa bridge, then G — e is of order n and size m — 1. We can see this through the following
example:

1

) 4

We can see that the graph on the right is the same as the one on the left, except we have removed
the edge 5 — 4. We can see that G — {3 — 4} is of order 5 and of size 4. Our claim is that the
only bridge here is 1 — 2. Why is this the case? Because that is the only edge we can remove that
would result in the graph being disconnected.

Let us look at the following graph:
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3

What can we say about the two graphs? If we remove an edge from the one on the left, then it
is a bridge. On the right, however, that is not the case. The graph stays connected regardless of
what you remove.

Fact: Let G(V,E) is a connected graph. An edge e is a brige iff we cannot form a cycle in G where
e is an edge within such cycle.

Sub-Fact: We know that C, has no bridges, because it is a cycled graph itself. This is trivial. On
the other hand, for P,, every edge is a bridge.

Sketch: Assume that e is a bridge. Show that every cycle of the graph, G (if such cycle exists),
does not contain e has an edge.

<= Assume C' is a cycle of G st e is an edge of C. Hence G — e is connected since C' — e stays
connected. A contradiction. Thus our denial is invalid. We conclude that every cycle of G does
not have e as an edge.

The converse: Assume G does not have a cycle C, where e is an edge of C. Show that G — e is
disconnected (i.e. e is a bridge). We know that since e is an edge of C, then if we remove it, it is
no longer a cycle. Therefore e is the only path between some two vertices and thus it is a bridge.

March 10th, 2021

1. If we have a graph, G(V, E)m with v € V, then v is a cut-vertex iff Jw, z € V st every path
from w to z must pass through v.

2. Consider e € E. Then e is a bridge (cut-edge) iff e is not an edge of any cycle of G.
Consider the two sets, A and B. Then we have that the Cartesian product is defined by:

AxB={(a,b)lac A and be B}

Now, what would this look like with graphs?

Def.: Cartesian Product between two Graphs: Imagine you have two graphs, G1(Vi, E1), G2(Va, Es).
The notation: G100G2 defines the Cartesian product of GGy with Go, where:
V={(a,b)|aeVi,be Vr}

Two distinct vertices of V', say (a1,b1) and (az,bs), are adjacent (connected by an edge) iff a; =as
and by — by € E5 OR a4 as € F1 and by = bo.

Let us look at an example to be able to show this:

1
G1 G2
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We say that the vertices of G100G3 is Vi x Vo=V, defined by the following pairs of vertices:
V={(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)} and [V[=[V1]x[V3|

Let us look at them in another way.

(1,4) (1,5)
(2,4) (2,5)
(3,4) (3,5)

Is (1,4) connected to (1,5)7 Yes, beacuse a; =ag and 5 — 4 is an edge in Go. We continue in this
fashion.

(1,4) (1,5)

@4 (2,5)

(34) (3,5)

Another way of drawing this:
(1,4)
(1)

(2,4) (3,4)
(2,5) (3,5)

The graph above shows all the possible edges between the vertices of G100Gs.

Is this graph a tree? No, bceause there are cycles. Is the graph bipartite? No, because we can have
a cycle: (1,5) — (2,5) — (3,5) — (1, 5), which is of odd degree. Therefore, it is not bipartite.

Since every edge is in a cycle, then we do not have any bridges within the graph. Are there any
cut-vertices? No, because the graph remains connected regardless of any single removal of a vertex.
We can choose any two vertices and find more than one path between them.

March 15th, 2021

Def.: Take two graphs, G1(V4, E1) and Ga(Va, E2). Then we say that G;00G> is an undirected,
simple graph with vertex set V=V, x Va={(a,b)|a€ V1 and b€ V,} st. two vertices (a1,b1), (az,b2)
are connected by an edge iff:

1. ai=as and by — by € FEs, or:

2. a1 —az€ Ey and by =by
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We know that [V|=|Vi| x|Va|, and that if Gy is of order n, with G2 being of order m, then G100G>
is of order mn.

How do we visualize the Cartesian Product, Gi0G2? Let us see if we can draw P3 x Cs.

Solution: We know how to draw Cs and P, they will be drawn below:

1 2 3

P

Cs

5 6

The steps are as follows. We will draw them to be able to visualize it at each step.

Since 5 is connected to 6 in Cs, then we must have that (1,5) is connected to (2,5). And similarly,
(2,5) is connected to (3,5). Furthermore, we know that (1,6) is connected to (2,6), which in turn
is connected to (3,6).

Now let us look at the following two graphs:

1 2

G
1 e

3 4

How would we draw the graph for G10G2? At each vertex in the first graph, we put a copy of Gba.
It will look as such:

Another example:
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How to visualize G10G5:
1. At each vertex of Gy, draw a copy of Go
2. if w,v € V] and u— v € Ey, then connect tthe corresponding vertices with an edge.

Let us try to re-visualize P3 x C3, with an easier graph to see:

(1,4) (2,4) (3,4)

Question:

5/ Go

What will the graph of G100G2 look like?

What can we observe from the graph above? If one of either G; or G2 are disconnected, then the
Cartesian Product is also disconnected.
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Hypercube (n-cube):
Q1=K and Q2= Kz X K>

We will take them to be in the binary base. By this, we mean that Ko and K3 x K9 are drawn as
such:

Q1=K, Q2=K3 x Ko
00 01
0
1 10 -

Continuing in this fashion, we take @, = Q,—1 X K5. Thus we know that:

Q3= Q2x Ko =Ky x K3 x Ky

000 010

011

001

100 110

111

101

There is an easy way to draw @Q,. We already know that:
1. Qn=Qn-1x K>
2. We have that |V |=2" for the graph @,. Each vertex is an n-string of 0s and 1s.
3. Two vertices in @, are connected by an edge iff they differ in one and only one bit.

4. If v eV, then deg(v) =n. This implies that @, is always n-regular.

Let us take the vertex 010 for example. We know that 010 is conneted to 110, 000, and 011.
These are the three bit differences in 010. We also know that these vertices belong in Q3.

5. |E|=n2""1. What is the proof of this?

> deg(vi) =2|E|
|V'|=2" eachof degreen
Z deg(v;) =n2"=2|F|
|E|=n2n—!

6. girth(Q@,)=4for all n>2. There is no cycle of length 3 in the graph.

000 — 100 — 110 — 010 — 000
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7. We can sketch @), is a bipartite graph. Why? Because it contains no odd cycles.

March 17th, 2021
Recall the concept of the hypercube, which is @, = @, _10K5. What is the diameter of @Q,,?
Question: Consider Q4. Find the distance d(0101,0010).

Solution:
0101 — 0001 — 0000 — 0010

By changing only one bit at a time, we can see that there exists a path of length 3. This is the
shortest possible path between the two vertices. Therefore, d(0101,0010) =3. Can we find a path
of length 27 No. This is because the vertices differ in 3 bits. Essentially, we can see that the length
of shortest path is the same as the Hamming distance.

Now, what is diam(Q,)? It is n. Why? d(000...00,111...11) =n. The maximum number of bit
changes is if we have to change every single one, which in a @,, graph is equal to n.

In general, d(v, w) =no. of differences in bits. There are many examples of this. It is trivial.

There is another way of constructing Q.

0 00 10 000 110
010 100

011 101
1 10 11 001 111

The idea is to replicate the previous layer and add a 0, 1 to the front. This is much nicer and easier
than constructing through the hypercube. Now, let us see Qq:

0000 0010 0100 0110 1000 1010 1100 1110

0001 0011 0101 0111 1001 1011 1101 1111

Def.: Independent set of vertices: Given a graph G(V, E), the subset I CV is called an independent
set of vertices iff every two vertices in I are not adjacent (every two vertices in I are not connected
by an edge).

Mazimum Independent Set: The maximum number of vertices in a graph that are non-adjacent.
Let us see the graph below to visualize this:
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Cy

3 4

What is a maximum independent set of C4? Considet the set of vertices {1,4} or {2,3}. They
are not adjacent to one another. Is {1, 4,3} an independent set? No. This is because 3 — 4 is an
edge. Now, let us see another graph:

9 .3
6 5

What is a maximum independent set of our graph, G? We know that G is of order 7. There is
more than one maximum independent set. However, they all share the same number of vertices.

{]‘?3’ 5’ 7}

In this question, this is the only maximum independent set. However, for example, {2,4} is also
an independent set, just not the maximum.

This is a maximum independent set. If a graph is complete bipartite, then we have K, ,. Trivially,
the maximum independent set is the bigger one of m,n.

Let I be a maximum independent of vertices. a(G)=|I|. In words, this is the size of the maximum
independent set. If we say that (1) =4, then every maximum independent set must have 4 elements
(Similar fashion to dominating numbers & dominating sets).

We know that v(G) =2. Take the dominating set {2,4}. Is there another dominating set? Take

{4,6).

Def.:Vertex-Cover: Take a graph, G(V,E) A subset C CV is called a vertex cover of the graph
iff every edge of the graph has a a terminal or initial vertex in C.

Look at the graph:
G

What is the vertex-cover of G? It cannot be {2}, because 1 — 3 is an edge and therefore 1 is not
a terminal vertex. The vertex-cover of G is {1}.

Another example:

Ca
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View vertex-cover: If a — b is an edge of G, then either a € C' or b€ C. Thus we can see that
{1, 4} is a vertex-cover, but {1, 2} is not. Why? Because the edge {3,4} does not terminate at
either 1 or 2. However, {1,4} is a vertex-cover because every edge in Cy terminates at either 1 or
4. {2,3} is another example

What is a minimum dominating set of C4? We can take {1,4} or {2,3}. Is there a connection
between the vertex-cover and the minimum dominating set?

March 22nd, 2021

Recall the independent set: A subset of vertices, I, where every two vertices in I are not connected
through an edge.

Independence number: «(G) =|M|, where M is a maximum independent set of vertices.
Vertex-cover (C'): A subset of vertices st. whenever a — b € F, then either a€ C or beC.

Vertex-cover number: S(G)=|C| where C' is a minimum vertex-cover of G.

Result: For a graph G(V, E), let C be a subset of V. Then C' is a vertex-cover of G iff V —C is
an independent set. This means that the set of vertices not including the vertices in the vertex-
cover are all non-adjacent.

Proof:

—
Assume C'is a vertex-cover of G

Show that V' — C'is an independent set.
Leta,beV —C.Showa —b¢ E.
Deny:a—be E

Henceeitherae C or beC.
Contradiction, sincea,beV — C.
Hencea—b¢ E.

Thus V — C'is an independent set.

p—
Assume V' — C'is an independent set.

Show that C'is a vertex-cover.

Assumea — b€ E forsomea,beV

ShowaeC or beC

Sincea — b e E, and V — C'indep., we conclude that:
aor bgV-C

Why? Becauseif botha,beV — C,

we cannot have the edgea — b

a¢V—-C=acC

b¢V -C=beC

Result: Assume C'is a vertex-cover. Then: |C'|+|V — C|=|V|. This is trivial, and clear from the
previous argument.

Result: Let G(V, E) be a graph of order n. Then we have that a(G) + 5(G) =n.
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Proof:

Weknow that |V —C|+|C|=|V|=n
This is true for any vertex-cover C.

Assume C'is a minimum vertex-cover.
Then V — C'is amaximum independent set.
=V - C|=a(G),|C|=B(G)

[V —-Cl+[Cl=a(G)+ B(G)=n

Consider the following graph as an example:

1, . 2

5 3

Give a minimum vertex-cover of G. Consider {1,2,4}. This is a minimum vertex-cover. Most
likely, if you take the vertex with the highest degree, it works well as the vertex-cover.

V—C={3,5}

This is a maximum independent set of G.

Another example:

) 6 7

This is a bipartite graph (not complete bipartite). What is a minimum vertex-cover of the graph?
Another way of denoting this graph is By 3.

C={5,6,7}, and thus|8|=3
This means that the maximum independent set of G is:
V—-C={1,2,3,4}, and thusa(G)=4
Let us look at another By 3, with diffferent edges:
1 2 3 4

5 6 7
We can see that the minimum vertex-cover of the graph is {6}, because all edges in the graph
terminate at vg. Thus the maximum independent set is V —C'={1,2,3,4,5,7}. Then 8(G)=1 and
a(G)=6.

Result: Assume B, , is connected. Then B(Bp, ) =min{m,n} and «(Bm,,) =max {m,n}.
This is trivial since the graph is connected, and thus each vertex from the upper set is connected
to some vertex in the lower set.
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Consider the graph:

4 5 6 7 8

This graph is not connected. However, we can see that C ={1,2,3} and M —C ={4,5,6,7,8} is
the maximum independent set. Thus a(G)=5 and S(G)=3. This goes to show that the graph
does not necessarily have to be connected for the result to hold.

Note: The domination set need not be the vertex-cover. Last lecture, we saw the example of Cy,
where the dominating set was the same as the vertex-cover:

1 2

Cy

3 4

However, we will show that this is not always the case. Take Pjy:
1—2—3—4

We know that {1,4} is a minimum dominating set, but {1,4} is not a vertex-cover. Why? Because
2 — 3 is an edge that does not terminate at 1 or 4. The minimum vertex-cover is {2,3}, which is
another dominating set. Can we prove that every vertex-cover is a dominating set? Yes, but the
converse is not true.

March 24th, 2021

Fact: Let G(V, E) be a connected graph and C be a set of vertices. If C' is a minimum vertex-
cover, then C is a dominating set. However, it need not be a minimum dominating set.

Proof:

Let C be a vertex-cover of G

We will show that C'is a dominating set.
LetaeV —C.Weshow3be Cst.a—beFE
Since C'is a vertex-cover,anda — b€ F,
beC

Thus C'is a dominating set.

Fact: Assume your graph G(V, E) is connected of order n. Then a(G) +v(G)=n
Proof:

Let C' be a minimum vertex-cover of G
Then B(G) = ¢1 = v(G) (By previous result)
Let M be a maximum independent set
Hence a(G) = |M |

From last lecture, a(G) + B(G) =n
=a(G)+v(G)=n
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If we find the maximum independent set of G, we can automatically find the vertex-cover and a
dominating set.

Question: G(V, E) is connected and of order n. Say M is a maximum independent set st. |M|=m,
with m <n. Find a minimum dominating set and find v(G).

Solution: C' =V — M, which is the minimum vertex-cover. But since the graph is connected, C' is
a minimum dominating set. We know that o(G) + v(G) =n, and thus v(G) =n —m.

End of Content for Exam I

Def.: Matching Subgraphs: Consider the graph G(V, E). A subgraph H(Vi, E;) of G is called
matching iff for every w € V4, deg(w) =1. This is the degree of w in H. To make it more clear, we
can say that:

degp(w)=1
Look at the following example:
1 ) 1 2
G H
3 4 3 4

H={1—23—4}
It is clear that H is a subgraph of G, but it is not an induced subgraph (The edges 1 — 3 and 2—4
are not present in H). However, H is a spanning subgraph of G, because V=V and E; C E.

Now, note the following: degp (1) =1,degn(2) =1,degn(3) =1,degn(4) =1. Since every vertex of
H is of degree 1, then we conclude that H is a matching subgraph of G.

Equivalent Definition of Matching Subgraphs: A subgraph H(Vi, E7) is a matching subgraph of
G(V,E) iff every edge in F; has no common vertex with every other edge in Ej.

Common language: If a — b and ¢— d € Fjy, then a,b, ¢, d are all distinct vertices.

One more way of saying it: H(Vi, E1) is a matching subgraph of G if every two edges in F; have
no common vertex. Now, let us look at some examples.
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We claim that this graph, G, has a matching subset of size 3 (meaning that the set of edges of the
subgraph has 3 elements).

Consider the graph: H ={2— 3,4 — 5,7 — 8}. This is a matching subgraph of G. If we draw
it, it would simply look like this:

What are we interested in by looking at this? Look at this example of a graph:

1

4 )

A maximum matching subgraph of this would be: H={1 — 2,3 — 5}. Another one would be
F={2—3,4—5}.

Def.: Matching Number: Let H be a matching of maximum size, say m. Then the matching number
is equal to m.

Look at the following graph:

5 6

The maximum matching of this would be H={1—2,3—5,4—6}. It is clear to see that by
selecting the wrong edges, we can easily be mistaken. Notice that {1 — 2,3 — 4} is a matching
subgraph, but it is not the maximum. Can we make a matching of size 47 No. It is impossible
since we do not have 4 distinct pairs of vertices.

April 5th, 2021
Recall the definition of a matching set: Take G(V, E), with M € E. M is called a matching subgraph

if whenever a — b,c— d € F, then a, b, ¢, d are distinct vertices. Another way of saying this is:
Every two edges in E have no common vertex.

m(G) =|M|, where M is maximum matching

Example:

1)
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1
/(\
2 3

In this case, M ={1—3}, or M ={2— 3}, or M ={1 — 2}. Therefore, we know that m(K3)=1,
which is the cardinality of the maximum matching set.

What if we take a square instead?

L, . 2
3u
4

Note that this graph is not K4. Do not forget this. Now, let us see the possible maximum matching
sets: M ={1—2,3—4} or M ={1—3,2—4}. In both cases, we can lead to the conclusion
that:

2)

m(G)=2=|M|

1 2 3 4
10
L]
11
5 6 7 8 9
M={1—17,2—5,3—6,4—8,10— 9}, m(G) =5

Look at the following example of a bipartite graph that will lead to a result about the matching

number:

We know that M ={1—>5,3 — 6}, and thus m(Ba,3)

Result: Assume your graph G is By, , st. |[A|=m and |B| =mn. Assume m >n. Let h be the
number of vertices in A that are connected by an edge to some vertices in B, and let k& be the
number of vertices in B that are connected to some vertices in A. Then m(G)=min{h,k}.
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5 6
This is Ba,2, where B={5,6}. We can take another example:

1. 2 3 4 5 e

6 7 8 9

This is Bs 4. Note that k=2, and h=4. Thus we know that m(B5 4) =min {4, 2} =2. We can use
this information to construct the minimum matching set:

M={3—6,4—9} or M={3—7,8—4}

If a graph has no odd cycles, then we know m(G), because we can draw the graph as a bipartite.
The problem arises when the graph has odd cycles. Let us demonstrate:

1

4 5

This graph contains an odd cycle (1 — 2 — 3 — 1), which is of length 3. Therefore we cannot
make a bipartite graph out of this. Thus we have to manually check to see what the maximum
matching set is. We can come up with M ={1—3,5—4} or M ={3 —5,2—4}. These sets
are of cardinality 2, which means that m(G) =2.

Def.: Perfect Matching: Let M be a matching set of a graph G(V, E), say M ={a; — b1, as —
ba, ..., }. Let us take the set Vi ={a,bla—be M}. If Vi =V, then we say that M is a perfect
matching set. In other words, if we take the vertices of all the edges in the match, then the set of
vertices should be the same as the set of vertices in the original graph G. We are essentially using
all the vertices in the graph.

M={1—23—4}
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This is a perfect matching set, because it uses all 4 of the vertices that are in the graph G. Another
example:

4 5
This is a graph representing C5. We claim that this graph has no perfect matching sets. We can find

a matching set for this graph: M ={1 —2,4—5} or M ={1 — 2,3 —4}. These are maximum
matching. However, they do not include all the vertices, and thus there is no perfect matching set.

Consider Py:
1—2—3—4—5—6

What is a maximum matching set for Ps? Is there a perfect match for it?
M={1—23—45—6}

We can see that this matching set includes all the vertices in P, and thus M is a perfect matching
set for Ps. On that note, m(G) =3.

Note that evert perfect matching set is a maximum matching set, but it is not true the other way
around. In other words, not every maximum matching set is a perfect matching set.

Result: A graph C,, or P, has perfect matching set iff n is even. Furthermore, m(C,, or P,)= %

We will take the example of C1g to demonstrate this result:

M={1—23—45—6,7—89— 10}, and m(cm)=5=§

Proof: It is trivial.

51



We know from this result that m(C,, or P,)= % as long as n is even. But what can we say about
m(C,, or P,) if n is odd instead?

m(Cy, or Pn)=(n+1)={g} forn odd

When we have a tree, we have to redraw it as a bipartite graph, and we apply the earlier result
taking the minimum between the two sets’ connections to each other.

Result: We say that K, , has a perfect matching set iff m =n.

Proof:
We have that m(K,, ) =min{m,n}

This is because every perfect matching set is a maximum, and by the first result, we know we have
to include all the vertices for it to be maximum, and this implies that m =n. Otherwise, there is
no way to choose the perfect matching set.

April Tth, 2021

Def.: Edge-Cover: Consider a graph G(V, F). A subset of G, denoted E¢ C E is called an edge-
cover of G iff Va € V', 3 some edge a — b € E¢, for some be V.

AN

What is a maximum matching for this graph? {2— 15,3 — 7}. In other words,

Exp:

M={2—53—7}

However, this graph has no edge-cover, because this graph is not connected, and has vertices of
degree 0. Let us look at another example:

AV

We can see that this graph is also not connected. However, this graph does NOT have isolated
vertices (vertices of degree 0). We will proceed: M ={1—5,2—6,3 — 7}. But what would be
the edge-cover?

Exp:

E={1—52—6,3—7,4—7}
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This is the minimum edge-cover, because we cannot come up with a smaller set.
Be(G) = |E¢| st. E¢ is minimum

We know that m(G) =3, 8.(G) =4=|V|=T.

Exp: Consider the graph of Cjy:

M={1—2,3—4},m(Cs) =2
Ec={1—2,3—4}
m(Cy) + Be(Cy) = |V | =4

Result: Consider G(V, E), graph with no isolated vertices (no vertices of degree 0). Then we can
say that:

m(G) + Be(G)=n=|V|,
where n is the order of G.

Assume M is a maximum matching set. Asssume that B.(G) < m(G).

This proof was left incomplete and will be revisited in a later lecture.

Def.: Incident: Given a graph G(V, E), where e € Gst.e =a — b for some a,b€ V. Then we say
that e is incident at a and e is incident at b. When we have that e is incident at a vertex a, then
e could be one of two things: e=a—10b, or e=b—a.

This can lead to another definition of the degree of a vertex: The number of edges that are incident
at the vertex, say a.

Question: Assume we have a labeled graph G(V, E'), where labeled means that all edges and vertices
have labels.

€1

€5
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The incidence matrix:

€1 €2 €3 €4 €e5 €g
111]11]0|0|0]0
2(110]0]1(0]0
3/]0{0]0(1]|1]0
410(0(1(0]1])1
5(0(1]1]0]0]0

The sum of the numbers in each row is the degree of the vertex, and the sum of the numbers in
each column is always 2, because each edge connects only 2 vertices.

Line Graphs: Let us demonstrate what a line graph is through an example. Consider the following
graph G, which we will use to construct L(G).

We swap out the vertices with the edges, which are labeled in G.

em, en € V(L(G)) are connected by an edge in L(G) iff they have a common vertex in G. This
means that they are incident at the same vertex in G.

€1

L(@)

€3 €2

We can see that L(G) =~ G, and in fact the example shown is K3. In other words, L(K3)~ K3. We
can see another graph:

G L(G)
1 e1
€1 €9 €3
€2
2 3 4 €3

Assume that we have L(G1) =~ L(G2). Does this necessarily mean that G; = G2? No. This is not
the case. We can see that in the examples we just provided. We showed in the examples that
L(K3) = K3, but also that L(K; 3) ~ K3. Howwever, we know that K3 K1 3.

Exp:
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P4Z Y Py Py Py
€2 €3

el
L(P4)2

€3 @ €9

We can see that L(Py) % Py, because in fact L(Py) = K7 .

We can also observe that if we have a graph G of size m and order n, then the line graph L(G)
will be of order m.

April 12th, 2021

Consider the following graph:

1
5
5 €1
es e
4
€4
2
€3
3
‘/L - {617 €2, €3, €4, 65}
We can draw L(G) as such:
el
€5 €2
€4 €3
The order of L(G) is equal to the size of G.
Result: Assume that G is of order n and sizem. Let V ={v1,vs,...,v,} be the set of vertices of
the original graph. Assume dy,ds,...,d, are degrees of the vertices of V respectively, ie. d; is the

degree of vertex vy, ...

d?+d3+d3+---+d2—2m

Then we can say that size(L(G)) = 5
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Sketch: The idea is to choose a vertex v;, with deg(v;) = d;, where we have 1 <i<n. d;’s edges are
connected to v;.

The number of edges in L(G) that connect the d;’s edges, or d;’s vertices in L(G). The number
of edges in L(G) =d1C2+ daC2+ - - + d,,C2, where C is the combinational choice. Thus we will
have the following:

di(di—1)  do(da—1) | du(l—dn)
gttt
A3 —di+d3—do+ - +d2—dy
B 2
APt d3 44 dy— (ditdat -+ dn)

2
(di+do+---+dy,)=2m=2|E|

Question: Assume the degrees of the vertices of a graph of order 5 are: 3,2,1,1,1. Find the order
and the size of L(G).

__ > degreesof G

Solution: The order of L(G) 5

we will use the formula:

. Thus we will have order(L(G)) =4. To find the size,

9+4+1+141—2(4)

=4
2

Result: Let w be a vertex in L(G), in other words w is an edge of the graph G. Then deg(w)
would be: deg(a) + deg(b) — 2, where w=a —1b, an edge of G st. a,be V.

Assume h is adjacent to w in the line graph L(G). Then h and w have either a as a common
vertex or b are a common vertex. Thus:

deg(w) = [deg(a) — 1] + [deg(b) — 1]
=deg(a) + deg(b) —2

Def.: Eulerian Graph: F,, (“Fake cycle”) has m edges of order n < m, but vertices are allowed to
be repeated, but the edges are not. Formal definition: A graph of order n and sizem is called
Eulerian iff it is connected and F), is a subgraph of G. In common language:

a—a;—ag— ... —a

This cycle contains all distinct edges of the original graph, but ai, as, ... a, need not be distinct.
In other words, in the cycle, we can visit each edge exactly once, but vertices can be visited more
than once.

Exp:

v
Vs !

Vg Vg U3 V2
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This graph is not Eulerian, because we cannot have any cycle that would contain all the edges and is
visited only once. Remember that a cycle means that we have to start and finish at the same vertex.

We can see another example:

V6 v U1

Us V4 U3 Vg
We claim that G is Eulerian. Then we can construct Fy:
2—1—3—4—5—6—7—5—3—2

The edges are all distinct, but we can see that we visited some vertices more than once, such as 3
and 5.

Note that a fake cycle is the same as a circuit. Fake cycle is the Dr. Ayman Badawi term for it.

Result: A connected graph G(V, E) is Eulerian iff deg(v) is an even integer for evert ve V.

Def.: Semi-Eulerian: A connected graph G(V, E) is called semi-Eulerian if there is a fake path,
or a trail: @ — by — by — ... — b, — b with a #b. The vertices need not be distinct, but it has
all edges of G.

April 1/th, 2021

Recall Def.: Eulerian Graph: A graph is called Eulerian if it is connected and it has some F,,
circuit, that contains all edges distinctly in G.

Result: A connected graph is Eulerian iff the degree of every vertex is an even integer.
Sketch: First we prove that a graph G st. the degree of each vertex is >2, contains a cycle.

mini-Sketch: Assume G is of order n, and we have that v; — v — v3. If we have that v — vy is
an edge, then we automatically have a cycle. Therefore, we assume that vs — v; is not an edge.
We can continue with v; — vy — v3 — v4. If v4 — v1, then we have a cycle, and so on and so
forth. This process must terminate because the graph is of order n < co. Hence at some point we
must have vy — v; an an edge for some 1<i<k —2.

Now to prove the Eulerian result:

= Assume the graph is Eulerian. We show that the degree of each vertex is an even integer >2.
G has order n and size m. It should have a circuit or a fake cycle F,,, denoted as:

Fop:vy—ve—uv3— ... —vp— 11
This cycle has exactly m distinct edges. Note that not all vertices need to be distinct, but once

again, all edges are. Everytime we visit a vertex v; in F,, there will be two edges connected to it.
Since the edges of F,, are distinct, we conclude that deg(v;) =2K for some K > 1.
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<= Assume each vertex of G is an even integer >2. We will show that G is Eulerian. Since the
degree of each vertex is >2, we have already proved that the graph G must have a cycle C. If C
cotains all edges in G, then we are done. Assume C' does not contain all edges of G. We prove the
converse by induction. Assume every connected graph with even degree-vertices and of order <m
is Eulerian.

We first remove all edges from C. Consider the following graph:
7 1 2

10

9 8

Take C' to be: 1 — 3 — 10 — 7 — 1. We can see that all edges have even degree. If we remove
these edges, the order of the graph will remain to be n, but the new graph will look as such:

LE Iy
6
.10 o3
H4 HQ
4 5
9 8

When we remove the edges in the cycle, then we will have a disconnected graph. Let Hy, Ho, ...,
Hj, be the components of GG. In this example, we have 4 components in total, but the order is the
same. The degree of each vertex of every component is either 0 or an even integer. This is because
if we remove the edges in the cycle, we reduce the degree by 2. Also, note that each component
must have at least one vertex of C.

H; must contain a vertex of C, say v;. Size of Hy <m, and the degree of each vertex of Hj is even
and it is definitely connected by the definition of the components. = H; has a circuit (In our
example, it is 1 —2—5—4 —1.

Hsy must contain a vertex of the cycleC'. In our case, it is 3. We can go from 1 to 3, and from 3
we can go to the next component, H, with the vertex 10, and so on.

The idea is to remove the edges of a cycle, because the number of edges of each component will be
less then m. Each component will also have an even degree. We then keep track of the vertices of
the components to form a new cycle. Each component will be Eulerian.

Recall Def.: Semi-Eulerian: A connected graph G(V, E) is called semi-Eulerian if there is a fake
path, or a trail: a — by — by — ... — b, — b with a #b. The vertices need not be distinct, but
it has all edges of G. The initial vertex and the terminal vertex cannot be the same.

Result: A connected graph is semi-Eulerian iff exactly 2 vertices in the graph are of one degree.

Proof: Assume your graph is semi-Eulerian. We will show that G has exactly 2 vertices of odd
degree. We can take our fake path (trail):

V] — Vg —Vj— ... — V1 F U

and it contains all edges of GG. This means that the degree of every vertex in the trail is even except
vy and vg. If vy is a repeated vertex, then it will have even degree, which is a contradiction. The
degree of v; and v have to both be odd.
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Is an Eulerian graph also semi-Eulerian? No. It will never be the case.

Def.: Hamiltonian Graph: A connected graph of order n and size m is Hamiltonian iff C), is a
subgraph of G

Def.: Hamiltonian Path: A connected graph G of order n and size m is called a Hamiltonian path
iff P, is a subgraph of G.

Exp:

4 )

Is this graph Eulerian? No. It is not. Is the graph semi-Eulerian? Yes, because there are exactly
two vertices that are of odd degree (2 and 3).

We can construct a trail:
2—5—4—3—1—2—3
This graph is Hamiltonian, because C5:1 — 2 —5—4 — 2 —1 is in the graph. It is also a

Hamiltonian path because it contains Ps: 1 — 2 —5—4 — 3. In fact, we can conclude that every
graph that is Hamiltonian also contains a Hamiltonian path.

April 19th, 2021

Recall Def.: Hamiltonian and Hamiltonian Path: A connected graph G(V, E) of order n is Hamil-
tonian iff C), is a subgraph of G. G(V, E) is a Hamiltonian path iff P, is a subgraph. Clearly a
Hamiltonian graph is a Hamiltonian path, but the converse is not true.

Result: Assume that G(V, E) is connected and of order n. Assume that deg(z) + deg(y) >n for
every non-adjacent pair of vertices, x and y. The conclusion is that G is a Hamiltonian graph.

Exp: Construct a Hamiltonian graph of order 7. We will look at the trivial case: C7. Now, look at
the following graph:
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This graph is definitely not Eulerian nor is it semi-Eulerian. However, is this graph Hamiltonian?
In other words, can we find Cg as a subgraph of this graph? Consider the following:

1—2—5—8—7—6—3—4—1

Therefore, since Cy is a subgraph of G, then it is a Hamiltonian graph.

Def.: Petersen Graph: Connected of order 10 and of size 15, and has the following shape:

1

A 2
i N\
<

7

4

It is clear that the Petersen graph is 3-regular. Therefore it is definitely not Eulerian. However, is
it Hamiltonian? No, it is not. However, it is a Hamiltonian path. We consider the following;:

1—2—3—4—5—9—6—8—10—7
This is Pjg, and therefore we conclude that it is a Hamiltonian path. It is interesting to note,

however, that if we remove one vertex from this graph, then it will always be Hamiltonian. In other
words, G — {v} is Hamiltonian for any vertex v € V5.

Consider the following graph:

This is a graph of order 10 and size 15. However, this graph G; # Petersen graph. This graph is,
unlike the Petersen graph, Hamiltonian. We can construct:

Cipol—2—3—4—5—9—8—7—6—10—1
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Def.: Chromatic Number: The minimum number of colors needed to color the vertices of a graph
st. every two adjacent vertices have different colors. It is denoted as x(G)

Def.: Chromatic Index: The minimum number of colors needed to color the edges of a graph st.
every two incident edges (every pair of edges that share a vertex) have different colors. It is denoted

as x'(G)

Exp: Consider the graphs for Kp.

For K3:

X(K3)=3
X'(K3)=3

For K4:

1 2
3 4
X(Ky) =4

X'(Ky) =4

We can see that for every n, the graph of K,, would result in x(K,)=n and x'(K,)=n. However,
what is the chromatic number of a complete bipartite graph?

Why is this the case?

Since each set A, B contains vertices that are non-adjacent, then we only need two colors. The
same can be applied for x(By,m) iff not all vertices are isolated. It follows the same principle, as
the sets contain vertices that are non-adjacent. Completion is not a requirement.

Now, let us consider the graph of K3 4

What is x'(K3,4)? Our claim is that it is going to be 4. All of the degrees of the above set are 4,
and therefore the maximum number of incident edges is going to be 4. We can draw it as such to see:
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We can see that we have 4 distinct colors, and we can see the formula:
X' (K, m) =max {n,m}
What about the cyclic graph? We can see that:

X(Cr) =2forneven
X(Cy) =3for nodd

April 21st, 2021

Recall Def.: Chromatic Number: The minimum number of colors needed to color the vertices of
a graph st. every two adjacent vertices have different colors. It is denoted as x(G)

Recall Def.: Chromatic Index: The minimum number of colors needed to color the edges of a

graph st. every two incident edges (every pair of edges that share a vertex) have different colors.
It is denoted as x'(G)

Also, we recall that x(K,)=n and x'(K,)=n. We will visualize with the graph for Ky:

Now, let us see for Ks:

We can see in this case that we had to use 5 distinct colors, so for n odd, we have x/'(K,)=n.

X(Kn)=n
X' (K,)=n—1lforneven
x'(K,) =nfornodd
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X(Kn,m) =2
X' (Kp,m)=max {n,m}

X(Pn) =2
X' (Pn) =

x(Cy) =2forneven

x(Cp) =3fornodd
X'(Cy) =2forneven
x'(Cp) =3fornodd

Is there a relation between the edge-coloring of a graph and another type of graph? The line-
graph! We can see that x'(G) = x(L(G)). In other words, the edge-coloring of a graph is equal to
the chromatic number of the line graph.

Notation: We say that A(G) is the maximum degree of a vertex. This will lead to our result:

Result: If G(V, E) is bipartite, then x'(G) = A(G). In other words, the edge-coloring index of a
graph is equal to the maximum degree of the vertices in the graph. This is another way of saying
that x'(G) =max (m,n) for G =K, n.

Brook’s Theorem: Let G be a graph st. G# K,, and G # C,, for some odd integer m. Then we
can say that x(G) <A(G).

If we take K4 for example, we know that A(K4) =4, and x(K4) = A + 1. Furthermore, we can
make the following observations:

A(Ch,nodd) =2
X(Cnynodd)=3=A+1

Exp: Consider the following graph:
[ ®

By the theorem, we know that x(G) <3=A(G). We can see from the graph on the right that
X(G)=3. Can we find an example of a graph where A(G)# x(G)? Consider G = K1g,19. Then we
know that A(Kj,10) =10, but since it is a biparite, then automatically x(K10,10) = 2.

On the other hand, we can say that the chromatic index is always bigger or equal the maximum
degree of the vertices in the graph. Mathematically, we say that x'(G) > A.
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For any graph, we know that the maximum possible chromatic number is x(G) = A+ 1. Further-
more, we have that x/(G) = x(L(G)) < A+1. From this, we conclude:

X(G)=AonA+1

Question: When will x'(G) be A+ 17 iff L(G)= K, or L(G) =odd cycle, and this is by Brook’s
theorem.

What is x'(K1,3)? We know that it is 3. However, consider L(K7 3):

2 3 4 €2 €3

It is easy to see that L(K; 3)~ K3. Thus we can connect the results: x'(K1,3) = x(K3) =3.

Exp: Look at the following graph:

Then we have that x'(G)=3.

We need to construct a graph where the line graph is an odd cycle in order to find a graph st.
X' (G)=A. Is it true that x'(G)=A+1iff G=K,, or oddcycle?

April 26th, 2021
Recall that:

X' (K,) =A(K4) =n—1forneven
X' (Kn)=A+1=nfornodd

So far, we have dealt with graphs that are connected for the sake of understanding the chromatic
index and number. However, what do we do if the graph is not connected? Then we say that the
chromatic index is the maximum of the chromatic index of each component of the graph, and the
same applies for the chromatic number.

Recall Result: If a graph G is bipartite, then we have that x/(G) = A.

We can also recall that x'(C,) =A+1=3if n is odd. This will lead us into the next result, which
is given as such:
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Result: Assume G is connected and k-regular of order n, where n is odd. Then we can conclude
that x'(G)=A+1=k+ 1. This result is a special case of the above fact that x'(Cy) =3 for n odd.
We can look to the following graph, where we have 9 vertices, 4-regular:

We can see that the graph has chromatic index 5, ie. x'(G)=5=A+1.
This is based off of Brook’s theorem:
Recall Brook’s Theorem: G is connected, then x(G) < A except for K,, and C,, for n odd.

Def.: Planar Graphs: A connected graph is called planar if it can be drawn on a piece of paper
st. the edges intersect only at the vertices.

Exp:

This is the graph for Ky, is it planar? Not drawn like the first, but we can see from the second
drawing of it that is planar. It is important to see that the condition for a graph to be planar is
that it can be drawn like that.

Def.: Faces of Planar: Consider the same graph for Kj:
1

3 2

How many faces does this graph have? We claim that the facesare4 —1—2—4,1—3—4—3,
and finally 3 — 4 — 2 — 3. These are the three faces of this graph. We think of it as taking
scissors and cutting out of the graph without changing anything. Another face is the whole table
itself. This is the trivial case. A face cannot be partitioned into smaller faces. Therefore, K4 has
4 faces. Let us look at another graph:
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By staring, we can see that this graph is planar.

1—2—5—4—7—6—1
2—3—4—5—2

In total, we have 3 faces for this graph. Another example:

1

6 4

How many faces does this graph have? 3+ 1=4. They are trivial to see. The order of this graph
is 8, and it has 10 edges. Notice that 8 — 10+ 4 =2. This leads to our result:

Result: Let G be a connected planar of order n and size m. Then n —m + f =2, where f is the
number of faces.

Sketch: Since the graph is connected and planar, we can start from Cs and build the graph from
there. We add one vertex each time, which means that n goes up by 1 and so does m, since we
cannot just add edges outside of the vertices. This means that the number will never change.

April 28th, 2021

Recall Result: If G is connected, of order n and sizem, then n —m+ f=2. This leads to a second
result:

Result: Assume G is a connected planar graph of order n and size m. Then m <3n — 6. We will
also have another result using this result:

Result: Assume G is a connected planar graph of order n and size m. Then 3 f < 2m.

Sketch: If we assume that each face consists of C3 (3 edges for each face). Note that the default
face has all edges. If we put these two pieces of information together, we will have that 3 f < 2m.
Now, we can return to n —m+ f =2. From the above result, we have that f < sz Thus:

n—m+ f=2
nfm+?>2

3n—3m+2m=6
n—m=26=—m<3n—=6

Question: Convince me that K5 is non-planar. This means that we cannot draw it st. the edges
do not cross.

66



Solution: For K5, m=10 and n=>5. Can we see that m <3n — 67 10% 3(5) —6=09. Therefore, we
know that K is not planar.

Does this also mean that Kg is non-planar? Since K3 is a subgraph of Kg, and thus it cannot be
planar. This leads to this fact:

Fact: K, is planar iff 2<n <4.

Note that we can have a connected graph where m < 3n — 6, but this does not necessarily mean
that G is planar. This relationship is not iff.

Exp: Consider the graph for K3 3

m<3n—=6
9<3(6) — 6 =true

Assume K3 3 is planar. Then n —m+ f=2. Thus 6 -9+ f=2= f=5. What is the girth of
K3 37 The length of the shortest cycle in K3 3 is 4, thus girth(K3 3) =4. Hence 4 f <2m = f < 178,
but this is never equal to 5. Therefore we have a contradiction. Despite the fact that m <3n — 6,
we can see that K3 3 is non-planar.

Remark: Assume a connected graph has girth=~%, k> 3. Then k f <2m, where m is the number
of edges. Note that k # oo.

Is K3 2 planar? Yes. This means that n —m+ f=2 and m <3n —6. Let us try to draw this graph.
First, we find f to make this easier. f=3.

3 4

We can see that we have 3 faces in total, and that this graph is isomorphic to K3 2. We can also
see that K, ,, wheren >3 and m >3 is non-planar, and the simple explanation for this is that
K3 3 is always a subgraph of this.

Recall the Petersen graph:
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Properties:

fu—

. This graph is non-planar;

2. It is a Hamiltonian path;

3. It is not Hamiltonian, unless we remove exactly one vertex;

4. The Petersen graph is 3-regular, of order 10 and size 15. The chromatic index,

X'(G)=4=A+1

Why is it non-planar? The m < 3n — 6 holds. However, if the Petersen graph is planar, then f=7.
we have that girth(G) =5, meaning that 5f <30 = f <6, which is a contradiction.

Recall the n-cube or @,. We know that Q3 has 8 vertices and 12 edges. We have that @2, Q3 are
planar, while @, forn >4 are non-planar. We simply have to show that ()4 is non-planar, because
everything else contains it is a subgraph.

Def.: Subdivision Graph:

~] [

We take the original edges and divide them into further “fragments.” The graph on the right is a
subdivision of the graph on the left. Consider the example of:

XN DN

Again, we can see that the graph on the right is a subdivision of the graph on the left, because the
edges are fragmented into smaller edges that are connecting other vertices.

Big Result: A connected graph G is planar iff one of the following condition holds: G does not
have a subgraph that is a subdivision of K3 3 or Ks.

May 3rd, 2021
Recall the big result from last lecture:

Kuratowski’s Theorem: Consider G(V, E), a connected graph. Then G is planar iff it does not
have a subgraph that is a subdivision of K33 or Ks.
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We will use this theorem to convince ourselves that the 4-cube or @4 is not planar. This means
that we will show that (4 must have a subgraph that is a subdivision of K33 or Ks.

0000 0010 0100 0110 1000 1010 1100 1110

0001 0011 0101 0111 1001 1011 1101 1111

We select 6 total vertices in the graph of Qu:

1000 1110 0101
0001 0100 1101

We can see that this is somewhat similar to the graph of K3 3, since we have 3 vertices in the top
set and 3 in the bottom. Out of these 6, none are connected to one another. However, can we, for
example, find some vertex st. it connects to both 1000 and 00017 Yes, it is the vertex 0000.

1000
0000

0001

Now, we know that 1000 and 0100 are not connected through an edge, so we find a vertex that is
connected to both of them: 1100. We proceed in the same fashion to connect the vertices highlighted
above:

1000 1110 0101
]
1001
0000
b
0001 0100 1101

By doing so, we can see that Q4 contains a subdivision of K3 3, and thus the graph of Q4 is non-
planar.



Exp: Consider the graph of Kz 2

In this case, is the graph of K 5 with the new vertex w a subdivision of K3 2? Yes, does this mean
that we can share an edge within a subdivision of a graph? This is the question at hand.

We can also go through another method to show that @4 is not planar. We were previously shown
that m <3n — 6 <=3 f <2m, and this is based on the assumption that the girth of a graph is 3.
This new formula:

Fact: If girth(G) =4, and G is a connected planar, then we have that m <2n — 4.
Sketch:

4f<2m=>f<%

n—m—|—f:2:>n—m+%22
2n —2m+m =4
—m<2n—4

Using this fact, we can show that @4 is non-planar. In @4, we have n=16 and m =32. Therefore,
we come up with the equality:

(Recall girth(Q,) =4forn >4)
m<2n —4=>32<2(16) — 4
32 < 28: False

Therefore, this is another way of showing that @4 is non-planar.

What if the girth of our graph is 7 (For a connected planar graph)? Then we proceed as follows:

7f<om=sf <2
n—m+ f=2
Y{nferQ—m}?}

7
m—Tm+2m>14
7 14

—m<-n——
=5 5

If we know the girth of a graph, then we can play around and change the relationship between the
number of edges and the number of vertices.

Fact: Qy is planar iff K =2 3. It is not planar for any other value.
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Fact: K,, 5 is a planar. Why is this the case? It will never have a subgraph that is a subdivision
of K33 or Ks. Therefore, trivially, it cannot be non-planar.

Exp:

Show that G is not planar. Since the graph itself is a subdivision of the graph of K3 3, then we
know by default that it cannot be planar. This is by Kuratowski’s theorem, which states that a
graph is planar iff it does not contain a subdivision of K33 or Ks.

May 5th, 2021

Exp: Show that the following graph is non-planar:

2

6

We can see that the graph has a subgraph that is a subdivision of K3 3. Let us construct this
subgraph:

e
>
N



By construction, we can see that we have a subdivision of K33 in the graph, and therefore it is
non-planar. Now, let us try the formulas to prove the same:

m<3n—06
4x9
m= 5 =18

18<3(9) —6=18<21

Therefore, it satisfies this condition. We can look at another method / formula:
9-18+ f=2= f=11
3f<2m=3(11)<36

33< 36

This condition is also satisfied. This means that regardless of what formula we try to use, we end
up having to construct the subdivision of K3 3.

Dijkstra’s Algorithm: We construct a tree so that the weighted path between every two vertices
is minimum. Consider the graph below:

B

A B C D E F G H
A | 0o |00 oo
C To| oo |0 oo
D 10D 7D o0
E 10p | 6| oo
B Z- — | = — 10D GE o0
Gl=|-T=1=1=13¢ 12¢
Fl==]=1=1= 11
HI-[=1=1T=1=1 = =
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The tree shown above is that of the least weighted path, according to the algorithm that is
highlighted in the table above. In words, this is how the algorithm works:

1. Take the first vertex and look at all the adjacent vertices, look at the weight / distance
between the first vertex and the others;

2. Take the minimum distance, this will be the first vertex connected. Then we move on to
the second vertex and consider the distances between that vertex and the rest, excluding
the first vertex;

3. If the distance between that vertex and the others is less than the sum of the distance of
the first vertex and the new additional vertex, replace it with that. From here, we again
take the minimum, and that will be the next vertex;

4. Continue in this fashion until we reach the end of the set of vertices. Based on the indexed
weight between two vertices, we can decide where we want the vertex to go in the construc-
tion of the tree.

May 17th, 2021

Recall the idea of subdivisions:

The one on the left is a subidivision of K3 3, while the one on the right is not. This is because
you cannot share the same “path” to get from one vertex to the other, but you can share the same
added vertex to get from one to the other.

Def.: K-factor Let G(V, E) be a connected graph. A spanning subgraph H (using all vertices)
that is K-regular is called the K-factor of the original graph, G.

Exp: Does C5 have a 1-factor subgraph?
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4 3

No. We cannot have a spanning subgraph of C5 where each vertex is of degree =, which in our case
could only be 1.

le—\ o2
3e— o4
e D
However, we know that Cg is a K-fold graph because of the fact that we can draw it as follows:

1 3 5

2 4 6

This is a spanning subgraph of Cg that is 1-factor. Note that the subgraph, H, is a perfect matching
of 06-

Result: A connected graph G(V, E) of order n has a 1-factor spanning subgraph iff it has a perfect
matching set. This also means that we cannot have an odd order, since a perfect matching set
needs to be of even order anyway.

Idea behind K-factor: This is like a puzzle, we take the pieces and when we put them together, we
have the graph. Consider the graph of K o:

1 2
H,y
1 2
3 4 Ky
H
1 2 2
3 4
3 4
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We can see that both H; and H» are two spanning subgraphs of K o that are 1-factors. If we both
the two together, then we clearly get K 2. Recall the Cartesian product (similar to the idea i n
Abstract Algebra):

Ko o=H® H>

Consider K4 4. Can we write it as a composition of some K-factor? Yes, we can write it as 4 1-
factors.

Kys=H ©Hy© H3® Hy

where each H;is 1-factor

1111
e
" SRS

e

Let us now consider the Petersen graph: Recall that it is 3-regular, not planar and the chromatic
index, x’=A+1=4. Can we draw a composition of the Petersen graph into some K-factors?

pe]

4 3

There is no way that we can draw this graph as some Petersen=H,® Ho @ H3® - -- & H,, where
each H; is some K-factor. However, what if Hy,..., H, are not of the same K-factor? We can
draw the Petersen graph as Hy @ Hy where H; is 1-factor and Hs is 2-factor.
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1

*——=o
*———=o

R
7

We can see that if we “combine” H; and Ha, then we will get the Petersen graph. Also, it is clear
that the Petersen graph has a perfect matching, and we would expect at the beginning for it to
work as a composition of some K-factor graphs. The problem arises because the pentagon and the
star in the middle both have an odd number of vertices.

1

4

H,
8

2 3 4 5
7 8 9 10
2 3

5 4

H,

6
7
9 10

Now, consider the following graph:

1 H

Hy 1
VAN

4
GAS

We can see that the graph on the left is 3-regular and of order 6. Howwever, we cannot split it
into some H; that are K-factor, unless they are of different factors. The two graphs on the right
show the composition, showing that G = H; @ Hs where H; is a 1-factor and Hj is a 2-factor. In
the final, we might get a graph that we are familiar with and see whether or not we can factor it.
There is, however, no theorem on how we can actually do it. It is mostly trial and error.

Consider the graph of K3 2. Can we do some partition for this? It has no 1-factor. But does it
have a 2-factor? No. What about K4 »? It is of order 6, which is even, but not every even ordered
graph has a vertex match. K4 2 has no perfect matching so it cannot be 1-factor. It also cannot be
any K-factor, as we can easily see through an example of checking for 2-factor. There will always
be a repeated vertex.

What about K4 37 Can we construct a 2-factor of this graph? We can prove that Kg 5 does not
have a spanning subgraph that is K-regular, and then generalize.
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Proof: Assume H is a spanning subgraph that is K-regular. Then:

> deg(vi) = K(645) = K(11) =2|Ey|
i=1

But Kisodd and K(11)=odd.
— K cannot be odd. Contradiction

Therefore, K¢ 5 cannot have a spanning subgraph that is 1, 3, or 5-regular, or any odd number, But
we still need to check to see if it has a spanning subgraph that is 2-regular. In the next lecture,
we will try to generalize this for K, ,.

19th May, 2021

Def.: K-factorable: A connected graph G(V, E) is called K-factorable, G=H;® Ho @ --- ® H,,
where each H; is a K-factor of the original graph G. Recall that each H; is a K-regular spanning
subgraph of the original G. When a graph is K-factorable and we have n compositions, that means
that our graph G is (n x K)-regular.

Open Problem: (Conjecture)

Assuume G is connected, K-regular of order n=2h.
1. If h is odd, and K > h, then our graph G is 1-factorable.
2. If his even, and K > h — 1, then our graph G is 1-factorable.

We do not have a mathematical proof for this. However, using programs and straight computation,
we can get the feel that this is correct. Let us come up with some examples where this is right.
Consider Ky o — 2-regular, n=2(h) whereh =2 and K =h=2. Then:

Kyo=Hi® H>
where Hy, Hy are both 1-factors. Now, consider K, ,:
Kn,n:Hl@H2® - ©Hp

where each H; is again, 1-factor. We have generalized this for any K, , where m=n.

Result: Let G(V, E) be a connected graph of order n. G has a 2-factor subgraph iff G has a
Hamiltonian cycle.

Proof:

=>Assume G has a spanning 2-regular subgraph, H. Then H=1—2—3 —4—... —n—1.
This implies that the graph is Hamiltonian, where H = C,,.

<= Assume that G is Hamiltonian. This implies that C,, = H is a spanning 2-regular subgraph of
the original graph. This is exactly what we mean when we say that C, is a 2-regular subgraph of G.

Now, when does the graph of K, , have a 2-regular spanning subgraph? This graph is Hamiltonian
iff m=n. K3 o, for example, is not Hamiltonian. When we try to do it, we will never have enough
edges to go back to the first.
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Sub-result: K, , is Hamiltonian iff m=n.

Thus, we can see that, as an example, K¢ 5 does not have a 2-factor spanning subgraph because
it is not Hamiltonian. This leads us to the conclusion: K, , has a 2-factor subgraph when m =n.

What about the case of K, withn >3?7 It has a 2-factor because we can write it as:
1—2—3—4—...—n—-1

Is K4 4 2-factorable? We are asking to see if we can write K4 4= H; @ H» where each H; is a 2-factor.

1 2 H, 3 4
5 6 7 8
1 2 Hz g 4
5 6 7 8

Yes, K4 4 is 2-factorable.

Let us look at some Linear Algebra. Take any graph of the form K,, and look at its adjacency
matrix. We know that the adjacency matrix for any graph is alway symmetrical, and from a result
in Linear Algebra we have that if a matrix is symmetrical then all its eigenvalues are real. Thus,
all eigenvalues of an adjacency matrix of a graph G are real.

Reminder: Take A,n x n and « is an eigenvalue of A. Then we conclude quickly that:

3 some point # (0,0,...,0)

ai ay
A a.g =q a.g +0

an, an,

Look at K4 and its adjacency matrix.

0111 1 3 1
LOL L1 |3 41
1101 1] 13| 71
1110 1 3 1

—3 is an eigenvalue of adj(K})
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What if we take K7 instead of K4? Then this implies that 4 is an eigenvalue of adj(K5). In general,
the sum of the rows (or columns) of the adjacency matrix (should all be equal) is an eigenvalue
for the adjacency matrix. Thus n — 1 is an eigenvalue of adj(K,). However, this is not the only
eigenvalue of adj(K,).

How do we calculate eigenvalues in general?

Set | X I, — adj(K,)| =0
find X

Look at the matrix:

X -1 -1 ... -1
-1 X -1 ... -1
XI,—adj(K)=| @ -1 - -1 :
Soor o e 1
-1 -1 -1 ... X
X ~1 -1 ... -1
-1 X -1 ... -1
We want e =0
oo e 1
-1 -1 -1 ... X

If X =—1=|X1,—adj(K,)|=0

Thus —1is also an eigenvalue of adj(K,,).

These are the only two eigenvalues of the adjacency matrix. The characteristic polynomial of
adj(K,) = (X — (n—1))(X +1). Let us calculate the eigenspace of —1, and we will show that it
will have dimension n — 1.

-1 -1 -1 ... -1 1 0

-1 -1 -1 ... -1 2o 0

(—1) Iy —adj(K,)| @ -1 - =1 : || @ |=]|0

. : :

-1 -1 -1 ... -1 Tn 0
—x1—Ta—T3— - —Xp,=0
T1=—T2—=T3—T3— "~ Tp

We have n — 1 free variables, which means that the dimension of the eigenspace of —1 is n — 1.
Thus the characteristic polynomial of adj(K,,) is:

(X+1)"H X = (n—1))

This means that the eigenvalue —1 is repeated n — 1 times, and the eigenvalue n — 1 is repeated
once.

For K, n, the eigenvalues are 0, repeated n +m — 2 times , and \/nm and —,/nm each repeated
once.

(XE _ nm)X"+"L’2

This part of the course will not be included in the final exam.
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Home Work V, MTH 418, Fall 2021,
Ayman Badawi

Questions with Solutions

QUESTION 1. (1) Convince me that K, is a planar
Solution: See the picture

(2) Note, nothing special about 5. using the same concept, K, > is a planar.
(3) How many faces does K, » have ?
Solution: n faces? why? K, ; is of order n + 2 and size 2n. Hence n 42 — 2n 4 f = 2. Thus f = n.

QUESTION 2. (1) What is the order and the size of L(K3)?
Solution: Since K5 has size 10, the order of L(Kj5) is 10. Since each vertex of K is of degree 4, by class

result, the size of L(Ks5) = 3520 — 30,

(2) What is the order and size of L(Ks)?

solution: We know that if G is connected of order n, then the size of G + the size of G = size of K,, = n(n—1)2.
Since L(Kj5) is of order 10 and size 30, we conclude that 30 + size of L(K’) = size of K, = 45. Hence size of
L(Ks5) =15

(3) NICE!. Now L(K5) is of order 10 and size 15. In fact, it is isomorphic to the Petersen graph! (just believe
me!). so the chromatic number of L(K’s) is A = 3 and the chromatic index of L(Ks)is A+ 1=4.

(4) What is the chromatic number of L(K5)?

Solution: We know that chromatic number of L(K) = chromatic index of Ks. Hence by class notes (5 is
odd), we conclude that the chromatic number of L(K5) = 5

(6) Convince me that L(K5) is an k-regular graph for some k.

Solution: Let w be a vertex in L(Ks), then w = u — v is an edge of K5 for some vertices u, v of Ks. By class
notes, deg(w) = deg(u) + degree(v) - 2=4 + 4 - 2 = 6. Thus L(K5) is 6-regular.

(7) Let e be an edge of K5 and G = K5 — e. Show that G is a planar. Then find x(G) and /' (G).

Solution: Note that G is of order 5 and size 9. G satisfies the two properties of a planar graph discussed in
class. Also note that two vertices of G are of degree 3 and three vertices of G are of order 4. Here is the picture
of G.

B

For the vertices:

A isred

Bis green

Cis blue

D must have diff. color since it is adjacent to A, B, C. So
D is black.

E is blue (note E is adjacent to D, B, A)

So chromatic number is 4.

E

(8) Let G as in (7). Find x(G) and x/(G).
Solution: By staring. We see that x(G) = \/(G) = 4



2 Ayman Badawi

QUESTION 3. Let G be a connected graph of order 12 with the following degrees 3, 3,3,3,2,2,2,2,2,2,2, 2.
(1) Find the order and the size of L(G).
Solution: Let E be the set of all edges of G. Then ) degrees of vertices of G = 2|E|. Thus (12 + 16)/2 = |El
= 14. Hence the order of L(G) is 14. The size of L(G) (by class notes) is (4.3% + 8.2 — 28)/2 = 20.
(2) Show that G is a planar.
Solution: Here is the picture

(3) Find x(G) and x'(G)
By staring, we see that G is bipartite. Hence by class result, y'(G) = A =3 and x(G) = 2.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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MTH418 - Homework 11

BY DARA VARAM

March 2nd, 2021

Question 1:

01001 00010
10010 00011
A=l 00010 |,A2=] 000 11
01101 11100
10010 01100

i. For Gi:

deg(v1) =2, deg(vz) =2, deg(vs) = 1, deg(vs) = 3, deg(v5) =2
FOI‘GQZ

deg(v1) =1, deg(va) =2, deg(v3) =2, deg(vq) = 3, deg(vs) =2

ii. Drawing G and Ga:

Gli GQI
U1 w1
V2 /
Vs W5 o s W2
Vg U3 Wy w3

iii. Construct a mapping from G to G to show isomorphism:

f: Gl — G2
f(v) =ws
f(v2) = w2
f(vs)=wr
f(va) =ws
f(vs) =ws

iv. Is Gy or G2 a K, ,, for some m,n €Z"? Draw them if so.

Assume G is Ky, ,, for some m,n,€Z*. Then it has exactly m+n vertices and m x n edges.
Since we know that G has 5 edges, m x n=>5. This means that m=1,n=5 or m=5,n=1.
In either case, we have that the total number of vertices is m+n=145=6, but G; only
has 5 vertices. A contradiction. Therefore G is NOT K, .




Similarly for G, we proceed by contradiction. Assume Gg is Ky, . Then m xn=5=—=
m=1,n=>5 or m=>5,n=1. This implies that the number of vertices is m +n =6, but we
only have 6 vertices.

Another argument: Since we showed through the mapping of f that G~ Ga, then if G is
not K, », automatically G is not either.

For G1:
V1 V3
U2 V4 Us

We have a bipartite graph (can divide into set A ={vy,vs3} and B ={vs,v4,vs5}), but this
is NOT a complete bipartite graph.

For Go:
w
le ws
Wy Ws

Once again we have a bipartite graph (A = {w1, we, w3} and B ={w4,ws}) but we do not
have a complete bipartite graph.

v. Find the permutation matrix p st p Ay =Asp

1. Take I5:
10000
01000
00100
00010
00001
2. Ri— Rs
10000
01000
00100
00010
10000
3.R3HR1
00100
01000
00100
00010
10000
4. Rs— R3
00100
01000
00001
00010
10000



Therefore, the p we obtain that satisfies the equation p Ay = As p is:

o O oo

SO O =O

=NelelBells

o= O OO
(=l o Nl

vi. We start with A; and perform the following operations:

1. Ri— Rs
. R3— Ry

. Rs— R3

Ay

O OO
oo o~
ormooo
—orroO
orooR
cooro
[ e =
orooo
corroO

in your new matrix C as follows:
. C1—Cs
. C3— (O
Cs

— 03

OO =O
——ooo
orRrooo
cCOormm R
R ooo
corroO
——ooo
orRrooo
cCorr
cormoO

——oor

(=l =l ]

[=NeRel el
R ooOo
oO=0oO o0
cCor LR
== ooOo
cCor~=O
HHROOO
o~ocoo
COoOr R R
—==ooo

. Take the matrix you obtain here, and call it C. Now, replace the following columns

Ao

——ooo
orooo
cCOorm R
corroO
orooo
——ooo
——ooo
cCorr
corrmoO

You will end up with As upon completing all the steps.

Question 2:

vV ={3,5,6,9,10,12}

Two vertices a, b are connected by an edge iff a-b=0€ Z;5 (multiplication modulo 15). We proceed
with the multiplication table to be able to draw our graph:

X153 5 6 9 10 12
3 9 0 3 120 6
5 0 100 0 5 O
[§ 3 0 6 9 0 12
9 120 9 6 0 3
10 |10 5 0 0 10 0
12 16 0 123 0 9

Now we draw the graph:



5
12
10 6
9
1. Show that G is a K, ,, for some m,ne€Z"
3 6 9 12
5 10

Choose the sets A={3,6,9,12} and B={5,10}. We can see that this graph is a complete
bipartite. This is because each of both 5 and 10 are connected to very vertex in the other
set, A. Therefore, we can say that G is K, , for m=2 and n=4. In other words;

G:KQA

2. Find the girth of G:

The shortest cycle in the graph: 3 — 5 — 9 — 10 — 3. The other cycles in the graph are
also of the same length, which is 4. Therefore;

girth(G) =4

Another argument: Since G = K3 4 with 2,4 > 2, we have that the shortest cycle length is
always 4 (by result introduced in the lecture).

3. Find the diameter of G:

The maximum distance between two vertices in our graph is 2. That means that each pair
of vertices are at most 2 edges apart. Therefore;

dim(G) =2

Another argument: Once again, by previous result introduced in the lecture, we know that
for any complete bipartite graph Ko, ,, diam(Ky, ») =2.
4. Construct a minimum dominating set of G' and determine the dominating number.

Since our graph is K 4, we take one vertex from each subset of vertices, say 10 and 9. Thus
we have the dominating set {9,10}. Every vertex outside of this set is connected to one of
the two. Since this set consists of two elements, we have that:

7(G)=2



Note that any pair of vertices that from separate vertex subsets can be a dominating set.
We could have chosen {3, 5} to be our dominating set, but (G) would stay the same.

Question 3:

V=1{2,3,4,6,8,9,10}

X
=
S

= © 00 WD

0 D= O 0N
DWW O OO O Oow
= O 00 O = O ok
O OO OO OoOolo
0 O = O 0O |0
DO O OO W
= o0 O O

We draw the graph:

10 3

9 o 4

Vv

1. Show that G is NOT K, ,, for some m,n € Z+

Assume G is K, ,forsomem,n € Zt. =|E|=m xn =238 (we know this from the graph
drawn above).

We could have m=2,n=4 or m=4,n=2. In either case, we know that m + n =26, but we
have 7 edges. A contradiction.

We could also have m=8,n=1 or m=1,n=8 m+n=9%#7. Still a contradiction.
Therefore it is impossible for us to have a complete bipartite graph. However, since we have
no odd cycles, we can still construct a bipartite graph from G:

3 6 9

2 4 8 10

We have produced a bipartite graph that consists of A={3,6,9} and B={2,4,8,10}. This
bipartite graph is NOT complete because the vertex 3 is not connected to every vertex in
the set B, namely 2 and 10. Similarly, 9 is not connected to 2 and 10.

2. Find the girth of G:



We have two cycles within the graph: 3 —4 —6 —8 —3 and 9—4—6—8 —09.
Both of which are of length 4, and therefore:

girth(G) =4

. Find the diameter of G:

The maximum distance between two vertices in our graph G is between the vertex 2 and 3,
or 10 and 3, or 10 and 9 or 2 and 9. They all have the same length. We will use the distance
between 2 and 3 as an example. The path is:

2—6—4—3

The rest of the pairs also follow in similar fashion. In each case, d(a,b) =3. We do not have
any distances longer than that in our graph. Therefore:

dim(G)=3

. Construct a minimum dominating set and determine the dominating number of G:

Consider the set consisting of {4,6}. Every vertex outside of this set is either connected to
6 through an edge, or connected to 4 through an edge. We could alternatively go with the
dominating set {6,8}. In both cases, the same principle applies.

YG)=2
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MTH418 - Homework 111

BY DARA VARAM

March 18th, 2021

Question 1: Let G(V, E) be a connected graph of order n. Show that the size of G is >n — 1.

Since G is a connected graph, there are two possibilities: It is either a graph with cycles or a graph
with no cycles (a tree). Let |E| be the number of edges (or the size) for G. We proceed as follows:

e Assume G is a tree (no cycles) We know by class result that |[E|=n—1

e Assume G contains cycles (at least one), then the path between some pair of vertices is not
unique.

In a tree, we know that the path between two vertices v; and v; is unique. However, since
this graph contains cycles, there is at least some pair of vertices, vy and vy st. there is more
than one path, formed by k edges. Thus |[E|=n —1+ k. Knowing that |F| has increased
by some constant k, we conclude that: |[E|>n —1.

If we combine the two cases, we can see that regardless of whether the graph G contains cycles or
not, it will always be st. |E|>n — 1, where n is the order of the graph.

Question 2: Let T be a tree of order 13. The degrees of the vertices of T are 1,2 and 5. If T" has
exactly 3 vertices of degree 2, how many end-vertices does it have?

All degrees of vertices in T are of order 1, 2 or 5, but we can only have 3 vertices of degree 2. Let
us draw a tree as such to be able to better visualize the requirements:

T

In this tree, we can see that there are exactly 3 vertices st. deg(v) =2, we have 8 vertices st.
deg(v) =1, and we have 2 vertices st. deg.(v) =5. Thus T (shown above) fits the requirements of
the question.

To generalize this solution, we know that since we have exactly 3 vertices st. deg(v) =2, then we
have 10 vertices of either order 5 or 1.




Let m be the size of 7. We know through the class notes that the size of a tree is n — 1. In this
case, m=12. Let E be the number of vertices st deg(v) =1. Thus we have that (10 — E) is the
number of vertices st. deg(v)=>5. From class notes, we know that the sum of degrees is 2 x m.
Thus if we sum the degrees:

Z deg(v;) =2m =24
i=0

32)+E(1)+(10-E)(5)=24
6+E+50—-5E=24
—4F=-32

—F=8

Therefore, the number of vertices st. deg(v;) =1 is 8. There are 8 vertices with degree 1 regardless
of how we draw the tree.

Question 3: Construct a minimum dominating set of C14 and Pig
We can draw the graph for Ciy4:
1—2—3—4—5—6—7—8—9—10—11—12—13—14—1
Consider the following set:
{3,6,9,12,14}

It is easy to observe that every element outside of {3,6,9,12,14} is connected by an edge to at
least one of the 5 elements. We can draw this to further demonstrate:

3 6 9 12 14
]

1 2 4 5 7 8 10 11 13

Therefore, v(C14) =5, and our minimum dominating set:

{3,6,9,12,14}

For Pjg, we first draw the graph:
1—2—3—4—5—6—7—8—9—10
Consider the set {2,5,8,10}. We can draw the graph to see the following:
2 5 8 10



Clearly, every element outside of {2,5, 8,10} is connected to one of those 4 elements, and therefore
we know that (Pyp) =4 with our minimum dominating set:

{2,5,8,10}

Question 4: Consider the graph below:

A B

i. Is A— G — F — B an induced subgraph of our graph?
We can draw the graph for A— G — F — B:
A B

F

The definition of an induced subgraph states that this new graph (let’s call it G’(V4, E1))
must be a subgraph of G, and it must also be st. e€ E; iff e€ E.

We can see that Vi:={A,G,F, B}, and cleartly Vi cV:={A,B,C,D,E,F,G,H,I}.
However, A and B are connected through an edge in the original graph but not in the
subgraph. Therefore, since A— B is not in the new graph, it is NOT an induced subgraph.

ii. Is our graph bipartite?

The only cycle in the graph is A— G — F'— B — A, which is of even length. Therefore
we can construct a bipartite graph isomorphic to G:

B E 1 G

C D F A H

We can take the set a:={B,E,I,G} and g:={C,D,F, A H}. There are no adjacent
vertices in either o or f; the only vertices are between elements of a and elements of .
Therefore, G is bipartite.

iii. By staring, find diam(G)



The maximum distance between two vertices in G is 4, which can we obtained by taking
d(C,H),d(D,H) or d(E,I). In either case, the length of the path is 4, which leads us to
the conclusion:

diam(G) =4

iv. Find the dominating set of G and thus find the dominating number.

Take the set {B,F,A,G} or {B,FE,I,G}. In both cases, every vertex outside of those
4 is connected to at least one of them. We cannot construct a set smaller than this, and
therefore,

1(G) =4

Question 5: Let G be a connected graph, and let e be an edge that is a bridge. Show that e is an
edge of every spanning tree of G.

Let V :={v1,vq,...,v,} be the vertices of G, and E:={ej,ea,...,€,...,e,} be the set of edges.

Since e is a bridge, then removing it will cause the graph to be disconnected. Let T'(Vi, E1) be a
spanning tree of of G. Since T is a spanning tree, then V4 =V (All vertices in G are also in T').
Since 7' is also a tree, then there are no cycles, and the path between each pair of vertices is unique
(from class notes).

Take two vertices, v; and vjst. e=v; — v; (e is the edge that connects the two vertices). Since the
path is unique, then e is the ONLY edge between the two vertices. If we were to remove e, then the
graph would be disconnected, and thus we wouldn’t have a spanning tree anymore (disconnections:
no path between ALL vertices). Thus e has to be an edge between v; and v;.

Since v; and v; are ANY two vertices in the spanning tree, we know that this works for all edges.
Therefore e is an edge of every spanning tree of G.

Question 6: Consider the graph below:

B

G ¢ F

i. Find all cut-vertices of G

B,C,D and F
The vertices B,C, D and E are all cut-vertices. Why is this the case? Because in each of
the 4 cases, the removal of said vertex will cause the graph to be disconnected.
Removing B will cause the vertex A to be disconnected from the rest of the graph.

Removing C will cause the graph to split into two disconnected components (A — B —
G and D—E —F).

The same applies for removing D (disconnects E and F from the graph) and removing F
(F is left by itself).



iii.

ii. Find all bridges of G

The edges you can remove to cause the graph to be disconnected are:

e A—B
e C—D
e D—F
o EF—F

These are the only edges whose removals will cause the graph to be disconnected, and
therefore are the bridges of G.

By staring, find diam(G)

The maximum distance between two vertices is the distance between vertices A and F. The
shortest path between the two is: A— B— C — D — E — F, which is a path of length
5. Therefore:

diam(G) =5

Draw the complement of G. Is G connected? How many edges does G have?

The below is two versions of the graph of G (One is slightly less ugly than the other, although
both are exactly the same (isomorphic)):

B D




We know that our original graph, G, has 7 edges (by staring). Since the graph has 7 vertices,
we consider the size of the graph of K7, which is 21. We subtract 7 from this quantity to
get the size of G, which is given by:

size(G) =21 -7=14

We can double-check this with the graph we have drawn.

v. Draw 2 non-isomorphic spanning trees of G:

B
’ D
A E
c
G ¢ F
B
D
A E
C
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Graph Theory - Homework 4

Rohan Mitra

Q1) Gis a graph order n, M is a maximum matching.
i)If M is a perfect matching, prove n is even.

By definition of a matching, M must consist of edges that is not incident
on any other edge in the graph. This implies that a matching contains
edges joining distinct vertices. Since M is a perfect matching, it contains
all the vertices of G, implying that every vertex has degree exactly 1 in
M. Moreover, since an edge can only connect 2 distinct vertices, we

have that n must be a multiple of 2. m(G) = |[M| = %

ii)Assume M is a perfect matching, show M is a minimum edge cover.

Let V), be the set of vertices in the matching M. Since G has no isolated
vertices, we can find a perfect matching. Since M is a perfect matching,
we have M = {a, — by, ..., a,, — by} s.t:

Vy ={a,bla—b€eM}=V.ThusVa €V,3a—b €M for b € Vy
Hence, by definition, M is a minimum edge cover.

We also know that m(G) + B.(G) = n,where m(G) = g from above.

Hence, . (G) = % as well, consistent with our result above.

iii)Let H(V, E,) be a spanning subgraph of G. Show H is bipartite.

We show that H has no cycles, which would make it bipartite.



Since E, is a minimum vertex cover, we know that if there is a cycle in
G, we would not pick all the vertices in the cycle to be in E, because
adding the edge that completes a cycle would be redundant since there
already exist an edge connecting the last two vertices in a path (that
would form a cycle if connected). Hence, by construction, E. would not
contain any edges that would form cycles in H.

iv) H is as above. Let M, be a max matching of H. Prove M, is a
maximum matching of G.

We know m(G) + B.(G) = n. Moreover since H contains E. we can
conclude that B,(G) = B.(H) = |E,|.

We have: m(G) + B.(G) =nand m(H) + B.(H) =n

Since B.(G) = B.(H),we can conclude m(G) = m(H) = |M_|

Since H contains all vertices from G, all the edges of H is E,

and since M, is the maximum matching of H,we conclude that M,

must be the maximum matching of G.



Q3)

i) Let Aand B be the sets of By, , 5.t |A| = mand |B| = n.
Since T is a tree,we know it is connected. Hence, the number of vertices
in A that are connected to vertices in B is exactly m. Similarly the number
of vertices in B that are connected to vertices in A is exactly n.

Since m > n,we know from a class result that m(T) = n.
Since T is connected, it has no isolated vertices, hence:
We know m(T) + B.(T) =|V|=m+n

Hence B, (T) = |V|—-m(T) =m+n—n=m



ii)We see that L(Kl,n) ~ K,
Let vy be the root of K .
Since every edge in K, ,, is incident on v, L(Kl,n) would have
V = {v,}. With all vertices of L(Kl,n) being connected to each
other because they are all incident on v, in K; ,. Hence it would be

isomorphic to K,

i)




a)Yes, it is bipartite because there are no odd cycles!

A C £ R Tk E
5,6

D%EGIJ

b)Max matching ={A-B,C-E,F-G,H-I,K-J}, m(G) = min{5,6} = 5
c)Min edge cover ={A-D,B-C,F-E,G-H,I-K,J-K}, B.(G) = 6

d)Min Vertex cover={A,C,F,H,K},8(G) = min{5,6} = 5

e)Max independent ={D,B,E,G,I,J}, a(G) = max{5,6} = 6
f)Min dominating={B,C,G,K}, y(G) = 4



Q4)

i)Draw L(G):

i)




i)

€, €5 e &
\ ( O o
o ol
) 0 | )
© 0 1
° 1 j°

iv) Using Python program | wrote:

L=[[0.
1.

[
[
[0.
[

o O

O O O

. 1.

= el

0.

= O O

0

O R P O

-]
-]
-]
-]
-]

]

We notice that L=H.

Yes,L = L(G), by the identity map!
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Assume G(V, E) is B_m, nand r-regular (r not = 0). We show m =n.
Assume |A| = m and |B| =n, where V=A U B and A(Intersection B) = empty, (every two

vertices in A are not connected by an edge and every two vertices in B are not connected by
an edge).

Since G is bipartite and each vertex in A has degree r, it is clear that |E| = rm. Also since G is

bipartite and each vertex in B is of degree r, again it is clear that |E| = rn. Hence |E|=rm =
rn.

Since rn =rm and r not = 0, we conclude n =m
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Proof. Note that 3k +2(n - K-L)+L <=2n-2. Solve for L. We getL >=K + 3.
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Name ,ID

Graph Theory MTH 418 Fall 2021, 1-1 © copyright Ayman Badawi 2021

Home Work I, MTH 418, Fall 2021

Ayman Badawi

QUESTION 1. Stare at the following graph

(i) Find d(1,6)
(ii) Find d(4,1)
Gii) s1——-4—--5—-—-3—-—-6—-2——1— -3 apath?
(iv) Find a cycle of length 4
(v) Is the graph a k-regular? if yes, find the value of k.

QUESTION 2. Can we construct a graph with the following degrees: 3, 2, 2, 3, 2, 2? If yes, then draw such graph.
Is the graph connected? Complete?

QUESTION 3. Can we construct a graph with the following degrees: 3, 1, 1, 3, 3, 3? If yes, then draw it. Is the
graph connected? Complete?

QUESTION 4. Let V = Zg = {0,1,2,3,4,5,6,7} be the set of all vertices of a graph G. Two vertices a, b in V
are connected by an edge if and only if a + b € {0,2,4,6}. Draw such graph? Is the graph connected? Is the graph
complete? [Note from discrete math or abstract algebra a 4+ b € Zg means addition module 8;i.e.,4 + 5in Zg is 1, in
a different language 1 + 8 is the remainder when we divide 9 by 8. Also 4 + 7 is 3, 4 4 7 is the remainder when we
divide 11 by 8. ]

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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Name ,ID

Graph Theory MTH 418 Fall 2021, 1-1 © copyright Ayman Badawi 2021

Home Work II, MTH 418 , Fall 2021

Ayman Badawi

QUESTION 1. Stare at the following two matrices, A; is an adjacency matrix of graph G, A, is an adjacency matrix

of graph G5.
01 0 01 0 00 1O
1 0010 00011
Ai=10 0 0 1 Of,4=1]0 0 0 1 1
01 101 1 1100
1 0010 01100

(i) Label each vertex as 1, 2, 3, 4, 5. Find the degree of each vertex of | and find the degree of each vertex of G>.
(i) Draw graph G and G».
(iii) I claim that G| = G, so construct an isomorphic-map from G onto G,
@iv) Is Gy or G, a K, ,, for some positive integers m, n? If yes, then draw it.

(v) Find a permutation matrix P such that PA; = A, P.

(vi) In words, describe how we get A, from A; (i.e., by switching rows and column of A;)

QUESTION 2.Let V = {3,5,6,9, 10, 12} be the set of vertices of a graph G. Two vertices a,b € V are connected
by an edge if and only a - b = 0 in Z;5 (i.e., multiplication here is module 15. For example: 3 - 12 = 6 in Z;5, we
multiply 3 by 12 then we take the remainder when divided 36 by 15 )

1) Convince me that G is a K, ,, for some positive integers m, n.

2) Find the girth of G.

3) Find the diameter of G.

4) Construct a minimum dominating set D and find the dominating number of G.

QUESTION 3. Let V = {2,3,4,6,8,9, 10} be the set of vertices of a graph G. Two vertices a,b € V' are connected
by an edge if and only a - b = 0 in Z}, (i.e., multiplication here is module 12. For example: 3 - 10 = 6 in Z}5, we
multiply 3 by 10 then we take the remainder when divided 30 by 12 )

1) Convince me that G is not a K, .

2) Find the girth of G.

3) Find the diameter of G.

4) Construct a minimum dominating set D and find the dominating number of G.
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Home Work III , MTH 418 , Fall 2021,

Ayman Badawi

Submit HW III in the Submit HW folder by March 18, 11:59pm
QUESTION 1. Let G(V, F) be a connected graph of order n. Convince me that the size of Gis > n — 1.

QUESTION 2. Let T be a tree of order 13. The degrees of the vertices of 7" are 1, 2, and 5. If T has exactly three
vertices of degree 2, how many end-vertices does it have?

QUESTION 3. Construct a minimum dominating set of C4 and Pj.
QUESTION 4. Consider the graph G below

Is A-G-F-B an indoced E
suberaph of G7

Is G =2 bipartite sraph7

By staring can wou find diam(G)

Find the domination number,
then find a minimum dominating
set

QUESTION 5. Let G be a connected graph and e be an edge that is a bridge. Convince me that e is an edge of every
spanning tree of G.

QUESTION 6. Consider the graph G below

Find all cut-vertices of G

Find all bridges of G

By staring find Diam(G)

Draw the complement of G, is the
complement of G connected?

How many edges does the
complement of G have?

In addition to the questions above, draw two non-isomorphic spanning trees of G.
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Home Work IV, MTH 418 , Fall 2021,

Ayman Badawi

Submit HW IV in the Submit HW folder by April 15 (Thursday), 11:59pm

QUESTION 1. Let G(V, E) be a simple graph of order n. and M be a maximum matching.
(i) Assume that M ie perfect matching. Prove that n is an even integer. Find m(G). (briefly but to the point)

(i1) Assume that M is a perfect matching and G has no isolated vertices. Prove that M/ is a minimum edge-cover of
G .(briefly but to the point)

(iii) Assume that G has no isolated vertices and let F. be a minimum edge cover of G. Let 1, be the set of all vertices
of the edges in E.. (note that |V.| = n = |V|). Now it is clear that H(V,, E.) is a spanning subgraph of G. Prove
that H is bipartite. [not difficult, maximum 3 lines proof].

(iv) Let H as in (iii) and M, be a maximum matching of H. Prove that M, is a maximum matching of G (nice!)
[hint : Note that m(G) + 8.(G) = n, so it must be at most 3 lines of proof, note that 8.(G) = |E,|, where E.
is a minimum edge cover of G. So you learned that every minimum edge cover of a graph, GG, must contain a
maximum matching of G ]

QUESTION 2. Give me an example of a connected graph G that is not a tree with the following two properties:

(i) G has a spanning tree T" such that m(7") = m(G) and hence 5. (T') = f.(G) .

(ii) G has a spanning tree T such that m(T") # m(G) and hence 8.(T) # B.(G) . [Think, it should not be difficult
. If you start wrong, then you might write pages, but if you think correctly, then you get G' quickly.

QUESTION 3. (i) Let T be a tree of the form B, ,,,m > n. Find m(T") and 5.(T).

(ii) think without drawing but justify your claim BRIEFLY: The line graph of K, (n > 2) is isomorphic to a
familiar graph G. What is G*?

(iii) Consider the following GRAPH G (by staring ONLY answer the following , no need for details):
& ¥

D

Is G a bipartite? if yes, redraw it.

Find a maximum matching set and m(G)

Find a minimum edge-cover set and . (G)

Find Find a minimum vertex-cover set and 8(G)

Find a maximum independent set of vertices and o(G)

- 0 & 0 o ®

Find a minimum dominating set of vertices and v(G)
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QUESTION 4. Consider the following graph G of order n and size m:

A

F E

(i) Draw L(G), i.e., the line graph of G. Use the following labeling for the edges: ey = A — B,e; = A — C,e3 =
A—D,es =D — E,es = D — F. Note L(G) is not a bipartite graph.

(i1) Find the incidence matrix n x m of G (as in class, rows = number of vertices = n, columns = number of edges
= m), call such matrix N

(iii) Find the adjacency matrix of L(G), call it H.

(iv) (Nice connection between N and H! ): Use a software (if you want), find L = NTN — 2I,,,. Draw the graph,
say F, that correspond to the matrix L. By staring (no need to justify). Is F' is graph-isomorphic to L(G).
Conclusion (Nice): L is always an adjacency matrix of L(G)/nice result ].
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Exam One, MTH 418, Fall 2021
Ayman Badawi
(Stop working at 7pm/ submit your solution by 7:14pm ) T

QUESTION 1. (15 points) Stare at the following Graph, say G.

(i) If the graph is a B,, ,, for some positive integers m,n > 1, then find m and n and redraw it as a bipartite graph.
If the graph is not a bipartite, then explain.

(ii) Draw G (the complement of ). If G is not connected, then how many components does it have? draw each
component

(iii) Find a maximum independent set of vertices of the graph G. What is a(G)
(iv) Find a minimum vertex cover of G. Then find 8(G).

(v) Find a minimum dominating set of G that is not a minimum vertex cover of G. Then find v(G).
QUESTION 2. (15 points)

(i) Let T be a tree of order 10 such that the vertices have the following sequence of degrees: 3,1,1,1,1,1,3,5,z,y.
Find values of z, y. Show the work

(ii) Let G be a connected graph of order n > 2. Assume that 7" is a tree that is a spanning INDUCED subgraph of
G. Prove that G is a bipartite graph. How many edges does G have?.

(iii) Assume that a a bipartite graph B,, ,, is r-regular for some integer > 1 (i.e., all vertices are of degree ). Prove
that m =n

(iv) Can we construct a a bipartite graph of order 7 such that the vertices have the following sequence of degrees: 3,
2,2,1,3,2,3?If yes, then draw such graph. Draw the girth of such graph (if it has a cycle)
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(v) Can we construct a graph of order 7 such that the vertices have the following sequence of degrees: 3, 4, 3, 1, 6,
5, 6 7 Explain. If yes, then draw it

QUESTION 3. (12 points) Consider the following two graphs:

61

(i) Convince me that G; is graph-isomorphic to GG, by constructing a graph-isomorphism f : G| — G».
(i) Let A; be the adjacency matrix of GG} and A; be the adjacency matrix of G,. Find A; and A;.
(iii) Find a permutation matrix P such that PA; = A, P.
(iv) STATE clearly the operations that you will perform on A; in order to get A, (Show the work as in HW 2)

QUESTION 4. (15 points) Stare at the following graph (no need to justify or explain):

(i) Find a minimum dominating set of the graph, say G. Then find v(G)

(ii) Find (G) (i.e., the cardinality of a maximum independent set of vertices). Then find a maximum independent
set of vertices

(iii) Find diam(Q)

(iv) Find all vertex-cut (i.e., cut-vertices) of G.
(v) Find all bridges of G

QUESTION 5. (6 points) Consider the 4-cube graph, Q4
(i) Find d(0101,1001) . Then construct a shortest path between 0101 and 1001
(ii) Find girth(Q4), then construct such cycle.
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Exam Two, MTH 418 , Fall 2021
Ayman Badawi

(Stop working at 11:00 pm/ submit your solution by 11:10 pm ) ?

QUESTION 1. (i) (4points) LetCs:1—-2—-3—-4—-5—-6—1beacyclein Kgand G = K¢ — {1 —-2,2—-3,3 —
4,4—5,5-6,6—1}. Then G is of order 6 and size 9. Is G a planar? if yes, then draw G. If not, then explain
clearly (brief to the point)

(i1) (3 points) Let GG be the graph as in (i). Convince me that G is Hamiltonian by constructing a cycle of length 6
in G.

(iii) (6 points) LetC7:1-2—-3—-4—-5—-6—7—1beacyclein K;andG=K7—{1-2,2—-3,3—-44-55—
6,6 — 7,7 — 1}. Then G is of order 7 and size 14. Find the chromatic index of G, i.e., x'(G). Explain briefly
[hint: you do not need to sketch G]. Find the chromatic number of G, i.e., x(G). [Hint: maybe it helps if you
look at different C'5 inside G]. Convince me that G is not planar.

(iv) (4 points) Let G be a connected planar graph of order 11 and girth 6. Let m be the size of G. Find all possibilities
of m.

(v) Let G be a connected graph of order 6 such that the vertices have the following degrees 5, 5, 4, 4, 4, 4
a. (3 points) Draw such graph . [Hint: One way, draw two parallel P;, then now, I think, it is clear how to
finish the drawing]

b. (3 points) Is G Eulerian or Semi-Eulerian (Eulerian trail)? if Eulerian, then construct such circuit. If
semi-Eulerian, then construct such trail.

¢. (3 points) Find a maximum matching of G and find a minimum edge-cover of G.
d. (4 points) Find the chromatic number of G, i.e., x(G) and find the chromatic index of G, i.e., X' (G).
e. (6 points) Find the size of L(G). What is the maximum degree A of L(G)?. Find x(L(G)) .

(vi) (3 points) Let G be a connected PLANAR k-regular graph. Prove that 2 < k£ < 5, i.e., all k-regular connected
graphs with & > 6 are non-planar.

(vii) (3 points) give me an example of a connected graph of order 9 that is a Hamiltonian path but not Hamiltonian,
and it has a vertex v such that G — v is a connected Hamiltonian graph.

(viii) (3 points) give me an example of a connected regular graph G with an even number of vertices such that
X'(G) = A+ 1, where A is the maximum degree of G.

(ix) (6 points) Find the adjacency matrix of G = L(K3 ). Find the order and the size of G. Is G a planar? explain.

(x) (6 points) Consider the following weighted graph. Use Dijkstra’s Algorithm (as explained in class-notes) to
find a spanning tree such that between every two vertices there is a path of minimum weight.[Please start from
vertex A]. Then Sketch such tree.

4 3 / N

7 8\09

(C’ F
5

—

&

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com



294 TABLE OF CONTENTS

123 Final Exam



Name ,ID

Graph Theory MTH 418 Fall 2021, 1-2 © copyright Ayman Badawi 2021

Final Exam, MTH 418 , Fall 2021
Ayman Badawi
(Stop working at 1pm/ submit your solution by 1:12pm ) T

QUESTION 1. ( 34 points)
Let G(V, E) be a connected graph of order 6 and size m such that G = H; & H, & H3, where each H; is a 1-factor
subgraph of G.

(i) Convince me that G is a k-regular graph for some positive integer k. Find the value of k.
(i) Find m
(iii) By drawing, convince me that such graph can be a planar (Hint: Think about two triangles one inside the other).

(iv) By staring at the graph that you draw in (iii), find a maximum independent set of vertices of G. (no need for
justification)

(v) By staring at the graph that you draw in (iii), find a minimum vertex-cover set of G. (no need for justification)
(vi) By staring at the graph that you draw in (iii), find a minimum dominating set of G. (no need for justification)

(vii) By staring at the graph that you draw in (iii), find a maximum matching set of edges of G. (no need for
justification)

(viii) By staring at the graph that you draw in (iii), find a minimum edge-cover set of GG. (no need for justification)
(ix) By staring at the graph that you draw in (iii), find x(G).(no need for justification)
(x) By staring at the graph that you draw in (iii), find x’(G).(no need for justification)
(xi) By staring at the graph that you draw in (iii), convince me that G' is Hamiltonian.

(xii) By staring at the graph that you draw in (iii), by drawing W, and W5, convince me that G = W; & W,, where
W1 is a 1-factor of G and W, is a 2-factor of G.

(xiii) Let D be a connected k-regular graph of order 6 and size m, where k and m as in (i), (ii). Is it possible that D
be a non-planar?If yes, then justify by an example. If no, then prove your claim.

(xiv) Let L(G) be the line graph of G as in (iii).
a. Convince me that L(G) is a k-regular graph for some positive integer K. Find the value of k.
b. Find the size of L(G).
c. Convince me that L(G) is not a bipartite graph [hint: You do not need to draw L(G)]
d. Is L(G) an Eulerian? why?

QUESTION 2. ( 3 points) Let G be a connected graph of order n and of size n (n > 3). Prove that G has exactly
one cycle.

QUESTION 3. ( 3 points) Let T(V, E) be a tree of order n > 4, S = {v € V | deg(v) > 3}, H = {v € V|
deg(v) =1}, K = |S| and L = |H]| (i.e., K is the number of vertices of T where each vertex is of degree > 3 and L
is the number of vertices of 7" where each vertex is of degree 1. Prove that L. > K + 2.

QUESTION 4. ( 3 points) Show that the below connected graph is not a planar. [Hint: One way, stare at the red
vertices and some how construct a subgraph that is a subdivision of K3 3]

G
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QUESTION 5. ( 4 points) Consider the following weighted graph. Use Dijkstra’s Algorithm (as explained in class-
notes) to find a spanning tree such that between every two vertices there is a path of minimum weight.[Please start
from vertex A]. Then Sketch such tree.

© ° o
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