MTH418-Course Portfolio-Spring 2021

Ayman Badawi

Table of contents

Table of contents 1 eon Class Notes Version 1 ${ }_{2}$ 0.2 Class Notes Version 127 0.0 .3 Notes on Planar, Line Graph, and Chromatic 207
0.1 Worked out Solutions for all Assessment Tools Q.1. Solution for HW I 216
0.12 Solution for H W 218
0.13 Solution for HW MII 225
0.14 Solution for HW D 232
0.5 Solution for Exam 240
0.6 Solution for Exam II 256
0.17 Solution for Final Exam 272
1 Section 5: Assessment Tools (unanswered) 277
1.1 Home Work 278
H1 HW 279
1.1 .2 HW I 281

| 1.1 .3 | HW | I |
| :--- | :--- | :--- | :--- |
| 1.1 .4 | HW | V | 283

12 Exams285
121) xam 288 288 289
122 Exam
1.23 Final Exam 292 294

GRAPH THEORY (MTH418)

MERIAM MKADMI

Graphs
Graph: made up of set of vertices and set of edges.

$$
G=\{V, E\}
$$

Vertices are points.

$$
V=\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Edges are line segments that connect 2 vertices.

$$
E=\left\{v_{1}-v_{2}, v_{1}-v_{3}\right\}
$$

II is cardinality - how many elements in the set.

$$
|V|=3 \quad|E|=2
$$

This course will focus on undirected simple graphs.
\rightarrow Undirected: no direction or arrow

$$
V_{1}-V_{2}=V_{2}-V_{1}
$$

Simple: between 2 vertices, there is at most 1 edge. there are no cycles/loops.

NOT SIMPLE

NOT SIMPLE

SIMPLE
\checkmark Degree: number of edges connected to a vertex.

Example:

Q. Find the degree of each vertex.
A.

$$
\begin{aligned}
& \operatorname{deg}\left(v_{1}\right)=3 \\
& \operatorname{deg}\left(v_{2}\right)=\operatorname{deg}\left(v_{6}\right)=2 \\
& \operatorname{deg}\left(v_{3}\right)=4 \\
& \operatorname{deg}\left(v_{5}\right)=\operatorname{deg}\left(v_{4}\right)=\operatorname{deg}\left(v_{7}\right)=1
\end{aligned}
$$

Remark: \sum degrees $=2|E|$
Proof: each edge is counted twice when calculating all degrees of vertices.

Remark: a graph must have an even number of vertices with odd degrees.
Proof: $\quad \sum$ degrees $=2|E|$
Let $O=$ set of all vertices with odd degrees
Let $N=$ set of all vertices with even degrees

$$
\sum_{v \in O} \operatorname{deg}(v)+\underbrace{\sum_{v \in N} \operatorname{deg}(v)}_{\begin{array}{c}
\text { even, } \\
\text { because } \\
\text { sum of } \\
\text { even }
\end{array}}=\underbrace{\sum|E|}_{\text {even }}
$$

So this means $\sum_{v \in 0} \operatorname{deg}(v)$ must be even, and consequently, $|0|=$ an even integer.
\rightarrow Path: a sequence of edges from v to w such that no vertex is repeated.

4 Walk: a sequence of edges and vertices that may have repeated edges or vertices.
\rightarrow Cycle: a path that starts and ends at the same vertex. $V_{1}=V_{n}$

$$
\underset{\substack{\text { distinct } \\ \text { vertices }}}{V_{1}}-V_{2}^{V_{2}-V_{3}-\ldots .} V_{n}
$$

Remark: Every edge is a path, but not every path is an edge.

Remark: Every path is a walk, but not every walk is a path.

Example:
Walk:

$$
V_{1}-V_{3}-V_{2}-V_{1}-V_{3}-V_{4}-V_{5}
$$

Path:

$$
V_{1}-\overline{V_{2}-V_{3}}-V_{4}
$$

Cycle:

$$
V_{1}-V_{2}-V_{3}-V_{1}
$$

Length of path: when when travelling from one vertex to another vertex.

Distance: length of shortest path.
Example:

Q. Find the distance between v_{1} and v_{4}.
A. There are two paths from V_{1} to V_{4}.
(1) $V_{1}-V_{5}-V_{4}$ with length 2 .
(2) $V_{1}-V_{2}-V_{3}-V_{4}$ with length 3 .

$$
\begin{aligned}
d\left(v_{1}, v_{4}\right) & =\text { length of shortest path } \\
& =2 .
\end{aligned}
$$

L Havel-Hakimi Algorithm:
is a way to check for the existence of a simple graph from a degree sequence.
(1) Sort the degrees into descending order.
(2) Delete the first element V. Subtract 1 from the next V elements.
(3) Repeat steps 1 and 2 , until a stopping condition is met.

Example:
Q. can we construct a simple graph with the following degrees?

$$
4,4,6,2,2,4,2,2
$$

A. (1) $6,4,4,4,2,2,2,2$
(2)

$$
\begin{aligned}
& \text { (8), } \underbrace{4,4,4,2,2,2,2}_{-1} \\
& 43,3,3,1,1,1,2
\end{aligned}
$$

(3) $3,3,3,2,1,1,1$
(4) (3) $3,3,2,1,1,1$

$$
\leftrightarrow 2,2,1,1,1,1
$$

(5) (2, $\underbrace{2,1,1,1,1}_{-1}$
$(1,0,1,1,1$
(b) $1,1,1,1,0$

You can stop at these steps since it is obvious.
(7) $1,1,1,0$

$$
\Leftrightarrow-1
$$

(8) $1,1,0,0$

$$
\int_{v_{2}}^{v_{1}} \cdot v_{3}
$$

Simple Graph
(a) $\left(\begin{array}{l}1,0,0 \\ 1,0 \\ 0,0,0\end{array}\right.$
$\square 0$

All remaining elements are zero. stopping condition is met.

YES, a simple graph can be constructed.
\rightarrow Connected graph: a graph that has a path between

Example:

CONNECTED every 2 vertices.

NOT CONNECTED
(but it has connected components)
\checkmark Complete graph:
a connected graph in which every 2 vertices are connected by an edge.
Example:

CONNECTED (but not complete)

COMPLETE

Remark: a complete graph with n vertices is denoted by k_{n}.

Remark: in a complete graph k_{n}, where $n \geqslant 2$, each vertex has degree $n-1$.

Proof: in a complete graph, each vertex is connected to every other vertex by an edge, so the degree of each vertex will be the number of vertices connected to it excluding itself.

Remark: in a complete graph k_{n}.

$$
|E|=\frac{n(n-1)}{2}
$$

Proof: The degree of each vertex is $(n-1)$. There are n vertices. So the \sum degrees $=n(n-1)$. But we also know that \sum degrees $=2|E|$ So $|E|=\frac{n(n-1)}{2}$.
\rightarrow Subgraph:
Let $G=(V, E), H=\left(V_{1}, E_{1}\right)$
We say H is a subgraph of G iff $V_{1} \subseteq V$ and $E_{1} \subseteq V$.

Example:

 V V_{2}

SUBGRAPH

$$
v_{1}=\left\{v_{1}, v_{2}\right\} \subseteq\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \quad \varnothing \subseteq E
$$

4 Induced Subgraph
Let $G=(V, E), H=\left(V_{1}, E_{1}\right)$
We sam H is an induced subgraph of G iff:
(1) H is a subgraph of G
(2) $e_{1} \in E_{1}$ iff $e_{1} \in E$
in other words, if two vertices are connected by an edge in the original, they must also be connected by an edge in the subgraph.

Example:

SUBGRAPH (but not induced)

Example:

SUBGRAPH (but not induced)

Example:

(but not induced)

4 Spanning
Let $G=(V, E), H=\left(V_{1}, E_{1}\right)$
We say H is a spanning subgraph iff $V_{1}=V$ and $E_{1} \subseteq E$, in other words, the spanning subgraph has to have all vertices of the original one.
Example:

\checkmark Complement
Let $G=(V, E), \bar{G}=(V, \bar{E})$
We say \bar{G} is the complement of $G .2$ vertices in \bar{G} are connected by an edge iff they are not connected by an edge in G.

Example:

$$
\bar{E}=\varnothing
$$

$$
\cdot v_{3}
$$

SPANNING SUBGRAPH COMPLEMENT

Example:

$$
\begin{aligned}
& E=\left\{v_{1}-v_{3}, v_{2}-v_{3}\right\} \\
& \bar{E}=\left\{v_{1}-v_{2}\right\}
\end{aligned}
$$

COMPLEMENT
(but not a subgraph and not spanning

Example:

COMPLEMENT (but not a subgraph and not spanning)

4 Order
A graph of order n has n vertices.
Remark: Let $G(V, E)$ be a graph of order n. Then:

$$
|E|+|E|=\frac{n(n-1)}{2}
$$

Proof:

$$
\begin{aligned}
& E \cap \bar{E}=\varnothing \\
& E \cup \bar{E}=\text { set of all } \\
& \text { edges of } K_{n}
\end{aligned}
$$

Q. Is there a graph with n vertices such that $|\bar{E}|=10$?
A. Simplest graph is:

Check using the formula:

$$
\begin{aligned}
& |E|+|E|=\frac{n(n-1)}{2} \\
& 0+10=\frac{5(4)}{2}=10
\end{aligned}
$$

Another example of a graph can be K_{6} but with 10 edges removed.
\triangle Isomorphic

$$
G_{1}=\left(V_{1}, E_{1}\right) \quad G_{2}=\left(V_{2}, E_{2}\right)
$$

if G_{1} is isomorphic to G_{2}, they may be drawn differently, but they both have the same graph properties.
G_{1} and G_{2} are isomorphic iff $\exists a$ biiective function (one-to-one and onto)
$f: V_{1} \rightarrow V_{2}$ such that $\forall a, b \in V_{1}$, if $a-b \in E_{1}$ then $f(a)-f(b) \in E_{2}$

Example:

NOT ISOMORPHIC.
 cycle length of $G_{1} \neq$ cycle length of G_{2} etc.

Example:

ISOMORPHIC
Both are K_{4}.
Example:

ISOMORPHIC
$\rightarrow \underline{K}$-regular
A graph $G=(V, E)$ is called K-regular if each vertex has degree $=k$.
Q. Assume G_{1}, G_{2} are of order n and both are k-regular for some k. Is G_{1} isomorphic to G_{2} ?
A. Not necessarily. Some graphs can be k-regular but have different cycle lengths.

Remark: Assume $G(V, E)$ is K-regular where k is an odd integer. Then $|V|$ is an even integer $\geqslant k+1$

Example:

\rightarrow Adjacency Matrix
Example:

Q. Find the adjacency matrix for G.
A.

$$
\begin{gathered}
\left.\quad \begin{array}{ccccc}
v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

There are finite many possible adjacency matrices for the same graph.
For this example, 5! possible matrices.

Remark: G_{1} and G_{2} of same order are isomorphic \approx iff they have a common adjacency matrix.

4 Bipartite Graph
A graph $G=(V, E)$ is called bipartite iff $V=A \cup B, A \cap B=\varnothing$. In other words, every two vertices in A are not adjacent (not connected by an edge) and every two vertices in B are not adjacent.

Example:

$$
\begin{array}{rlrl}
A= & v_{1} & A=\left\{v_{1}, v_{2}, v_{3}\right\} \\
B= & v_{4} & v_{5}=\left\{v_{4}, v_{5}, v_{6}\right\} \\
& B I P A R T I T E & & A \cup B=V \\
& A \cap B=\varnothing
\end{array}
$$

Example:

BIPARTITE

$$
\begin{aligned}
A= & \left\{v_{1}, v_{2}\right\} \\
B= & \left\{v_{3}\right\} \\
& A \cup B=V^{2} \\
& A \cap B=\varnothing
\end{aligned}
$$

Example:

NOT BIPARTITE

BIPARTITE can be drawn as

Remark: A graph $G=(V, E)$ is bipartite iff it has no odd lengthed cycles.
Q. Draw $B_{5,3}$.
A. $B_{5,3}$ means bipartite graph with set A having 5 vertices, and set B having 3 vertices. The order of the graph is $5+3=8$.

4 Complete Bipartite Graph
a bipartite graph is called a complete bipartite graph iff every vertex in A is connected to every vertex in B.

Remark: $K_{m, n}$, where $m, n \geqslant 1$ is the notation for a complete bipartite graph.

Example:

Remark: $\left|E_{k_{m, n}}\right|=m n$.
Proof: $K_{m, n}$ has $m n$ edges. $|A|=m$, $|B|=n$. Each vertex in A has degree n and each vertex in B has degree m.

$$
\begin{aligned}
\sum \text { degrees } & =\sum_{v \in A} \operatorname{deg}(v)+\sum_{w \in B} \operatorname{deg}(w) \\
2|E| & =m n+m n \\
|E| & =\frac{2 m n}{\not 2}=m n
\end{aligned}
$$

4 Girth

$$
G=(V, E) \text {. }
$$

$\operatorname{girth}(G)=$ length of shortest cycle.

Remark: if a graph has no cycles, we say it has girth infinity ∞.
Q. What is the girth of $k_{n}, n \geqslant 3$?
A. girth $\left(k_{n}\right)=3$. Since $n \geqslant 3$, $v_{1}-v_{2}-v_{3}-v_{1}$ is a cycle of length 3 in $k n$.
Q. What is the girth of $K_{m, n}, m=1$ or $n=1$?
A. girth $\left(k_{m}, n\right)=\infty$. If $n=1$ or $m=1$ there will be no cycles.
Q. What is the girth of $K m_{1} n, m, n \geqslant 2$?
A. girth $\left(k_{m}, n\right)=4$.

$$
\begin{aligned}
& A=\left\{v_{1}, v_{2}, v_{3} \ldots v_{n}\right\} \\
& B=\left\{w_{1}, w_{2}, w_{3} \ldots w_{n}\right\}
\end{aligned}
$$

Shortest cycle is $v_{1}-w_{1}-v_{2}-w_{2}-v_{1}$
Q. Draw $\overline{k_{2,3}}$.
A.

Remark: $\left|E_{k_{m, n}}\right|+\left|\bar{E}_{\overline{k_{m, n}}}\right|=\left|E_{k_{m+n}}\right|$
Remark: For a graph $k_{n, m}$ of order $n+m$,

$$
\left|\bar{E}_{\overline{k_{m, n}}}\right|=\frac{n^{2}+m^{2}-(n+m)}{2} .
$$

Proof:
We know previously that for any complete graph $K_{n},|E|=\frac{n(n-1)}{2}$. Therefore for K_{n+m}, $\left|E_{k_{n+m}}\right|=\frac{(n+m)(n+m-1)}{2}$. Using this, we have:

$$
\begin{aligned}
& \left|E_{k_{m, n}}\right|+\left|\bar{E}_{\overline{k_{m, n}}}\right|=\left|E_{k_{m+n}}\right| \\
& \left|E_{k_{m, n}}\right|+\left|\bar{E}_{\overline{k_{m, n}}}\right|=\frac{(n+m)(n+m-1)}{2}
\end{aligned}
$$

We also know previously that for a graph $k_{n, m},\left|E_{k n, m}\right|=m n$. So:

$$
\begin{aligned}
& m n+\left|\bar{E}_{\overline{k_{m, n}}}\right|=\frac{(n+m)(n+m-1)}{2} \\
& \left|\bar{E}_{\overline{k_{m, n}}}\right|=\frac{(n+m)(n+m-1)}{2}-m n . \\
& \left|\bar{E}_{\overline{k_{m, n}}}\right|=\frac{n^{2}+m^{2}-(n+m)}{2}
\end{aligned}
$$

Remark: $\overline{K_{m i n}}$ will never be connected.
Δ Self -Complement
a graph whose complement is isomorphic to itself.

Example:

G

Remark: For a self-complem entary graph G of order $n, n=4 k$ or $n=4 k+1$ for some positive integer $k \geqslant 1$.
Proof: We know that $|E|+|\bar{E}|=\frac{n(n-1)}{2}$. But since G is a self-complementary graph, $|E|=|\bar{E}|$. So:

$$
\begin{aligned}
|E|+|E| & =\frac{n(n-1)}{2} \\
2|E| & =\frac{n(n-1)}{2} \\
4|E| & =n(n-1)
\end{aligned}
$$

This means that $4 \mid n$, or $4 \mid(n-1)$. So:

$$
\begin{aligned}
n=4 k \text { or } n-1 & =4 k \\
n & =4 k+1 .
\end{aligned}
$$

Q.

$$
A=\left[\begin{array}{cccc}
v_{1} & v_{2} & v_{3} & v_{4} \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right] \begin{aligned}
& v_{1} \\
& v_{2} \\
& v_{3} \\
& v_{4}
\end{aligned}=\operatorname{adj}(G) .
$$

Draw the graph G from its given adjacency matrix.
A.

This graph is not regular nor bipartite. $V_{3}-V_{2}-V_{4}-V_{3}$ is an odd cycle.

Remark: Adjacency matrices have to be symmetric about the diagonal.
\triangle Permutation Matrix
is a $n \times n$ matrix P such that each row has the number 1 exactly once. All other entries will be 0 .

Remark: Let A_{1} be the identity matrix for G_{1}, and A_{2} be the adjacency matrix for $G_{2} \cdot G_{1} \approx G_{2}$ iff \exists a permutation matrix P such that $A_{1} P=P A_{2}$ (similar)

4 Diameter

$$
\operatorname{dim}(G)=\max \{d(a, b) \mid a, b \in V\}
$$

In other words, if $\operatorname{dim}(G)=x$, then the distance between any two vertices a, b will always be $\leqslant x$.

Remark: $\operatorname{dim}\left(k_{m, n}\right)=2$.
Proof: A

Choose $v \in A$ and $w \in B . \operatorname{dim}(v, w)=1$.
Choose $v \in A, w \in A$, and $k \in B$.
$v-k-w$ is a path of length 2 .
Remark: $\operatorname{dim}\left(k_{n}\right)=1$.
Proof: In a complete graph $k n$, every vertex is connected to each other by an edge so for any two vertices the distance between them will be 1 .

Example:
G

$$
\begin{gathered}
\operatorname{dim}(G)=3 \\
v_{1}-v_{2}-v_{5}-v_{4}
\end{gathered}
$$

Example:

$$
\begin{aligned}
& \operatorname{dim}(G)=2 \\
& v_{1}-v_{2}-v_{4}
\end{aligned}
$$

Example:

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right] \begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}
$$

Q. Let A be the adjacency matrix of a graph G. Find the degree of each vertex.
A. $\operatorname{deg}(v)$ will be the sum of the row or column that v is in. So:

$$
\begin{array}{ll}
\operatorname{deg}(1)=1 & \operatorname{deg}(2)=3 \\
\operatorname{deg}(3)=2 & \operatorname{deg}(4)=2
\end{array}
$$

Example:
G_{1}

$$
A_{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]_{v_{4}}^{v_{1}} v_{1} \quad A_{3}=\left[\begin{array}{llll}
v_{3} & w_{1} & w_{2} & w_{3} \\
0 & w_{4} \\
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \begin{aligned}
& w_{1} \\
& w_{2} \\
& w_{3}
\end{aligned} w_{4}
$$

Q.
(1) Prove that $G_{1} \approx G_{2}$
(2) Find a permutation matrix P such that $P A_{1}=A_{2} P$.
(3) In words, explain how to get A_{2} from A_{1} by interchanging rows and columns.
A.
(1) Let us construct a bijective map to show that $G_{1} \approx G_{2}$.

$$
\begin{aligned}
f: G_{1} & \rightarrow G_{2} \\
f\left(v_{1}\right) & =w_{4} \\
f\left(v_{2}\right) & =w_{1} \\
f\left(v_{3}\right) & =w_{3} \\
f\left(v_{4}\right) & =w_{2}
\end{aligned}
$$

(2) We need to find the permutation matrix P starting from the identity matrix I_{4}.
To do this, use the bijective function above and change the rows of I_{4} accordingly.

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\text { Replace } R_{4}} \begin{aligned}
& \text { by } R_{1}
\end{aligned}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

$$
\left.\left.\begin{array}{rl}
\begin{array}{c}
\text { Replace } R_{1} \\
\text { by } R_{2}
\end{array} & {\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]}
\end{array} \begin{array}{l}
\text { Replace } R_{3} \\
\text { by } R_{3}
\end{array}\right] \begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \quad \xrightarrow{\text { Replace } R_{2}} \begin{aligned}
& \text { by } R_{4}
\end{aligned}\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

If our bijective map was from G_{2} to G_{1} instead, soy, $K: G_{2} \rightarrow G_{1}$, then $P A_{2}=A_{1} P$.
(3) To get A_{2} from A_{1} :

Replace the rows of A_{1} like this:
\rightarrow Replace R_{4} by R_{1}
\rightarrow Replace R_{1} by R_{2}
\leftrightarrow Replace R_{3} by R_{3} (no change)
\rightarrow Replace R_{2} by R_{4}

Then, replace the columns of the matrix obtained like this:
\rightarrow Replace C_{4} by C_{1}
Δ Replace C_{1} by C_{2}
4 Replace C_{3} by C_{3} (no change)
\rightarrow Replace C_{2} by C_{4}
After performing the row and column changes on A_{1}, the resulting matrix will be A_{2}.
\triangle Dominating Set
Let $G=(V, E)$. A subset B of V is called a dominating set if every vertex in $V-B(V$ minus $B)$ is connected by an edge to at least one vertex in B.

Example:

$B=\left\{v_{3}, v_{4}, v_{5}\right\}$ is a dominating set.
$L=\left\{v_{1}, v_{2}\right\}$ is a dominating set.
$K=\left\{v_{2}, v_{4}\right\}$ is a dominating set.
4 Dominating Number denoted by γ, it is the size of the smallest dominating set.

Remarks:

$$
\begin{aligned}
& \gamma\left(k_{m, n}\right)=2 \\
& m, n \geqslant 2
\end{aligned}
$$

$$
\begin{gathered}
\gamma\left(k_{n}\right)=1 \\
n \geqslant 2
\end{gathered}
$$

$$
\gamma\left(k_{1, n}\right)=1
$$

Example:

$$
\gamma(G)=1
$$

minimum dominating

$$
\text { set }=\left\{v_{2}\right\} .
$$

Example:

$$
\gamma(G)=4
$$

minimum dominating

$$
\text { set }=\{2,5,9,13\}
$$

4 Size
A graph of size m has m edges. Size $=|E|$.
L_{Δ} Tree
A connected graph G is called a tree iff G has no cycles, and iff between every two distinct vertices there is a unique path.
Proof: Assume G is a tree. Let $a, b \in V$. We need to show that a unique path from a to b exists.
\rightarrow Assume P_{1}, P_{2} are two different paths from a to b. It is clear that G will have
 a cycle. But G is a tree! This is a contradiction.

We need to show that if a graph has a unique path between a and b. then it is a tree.

4 Assume a unique path between a and b exists, and that G is a not a tree. Since G is connected and is not a tree, then \exists a cycle, say $v_{1}-v_{2}-\cdots v_{n}-v_{1}$. Hence, $v_{1}-v_{2}-\cdots v_{n}$ is a path from $v_{1}-v_{n}$. Also, $V_{1}-V_{n}$ is another path from v_{1} to V_{n}. This means that G is a tree - a contradiction to the assumption!

Example:

TREE
Q. Is every tree a $k_{1, n}$ for some n ?
A. No. Take this example:

It is not $k_{1, n}$ but it is still a tree.
Q. Is every Brim a tree?
A. No. Take this example:

$B_{3,2}$.

It is not a tree because it has a cycle.

Remark: Every $K_{1, n}$ is a tree but not every tree is a $K_{1, n}$.

Remark: Every tree is a $B_{n, m}$ but not every $B_{n, m}$ is a tree.
$4>$ End - Vertex
a vertex v is called an end-vertex iff $\operatorname{deg}(v)=1$.
Remark: Every tree has at least one end-vertex.
Remark: A connected graph G of order n is a tree if it is of size $n-1$. $|V|=n, \quad|E|=n-1$.
Q. Assume G is a tree. Show $|E|=n-1$.
A. (1) If $n=2$, then it is clear.
(2) Assume the result is true for some $n=k, n \geqslant 2$.
(3) We prove it for $n=k+1$.

Assume G is a trice of order $k+1$. We show $|E|=k$. Since G is a tree, G has an end vertex, say V.

Now $G-v$ (remove v from graph G) is a tree of order k.
By (2), we know the number of edges of $G-v$ is $k-1$. This means the number of edges in G is k.
Q. Can we have a tree of order 8 and size 6?
A. No. IE l must be one less than $|v|$ but $8-1 \neq 6$.
\leftrightarrows Component
We say D is a component of a graph G if D is a connected induced subgraph of G and D is not a subgraph of a connected subgraph of G.

Example:

Q. Is H a component of G ?
A. No, since H is a subgraph of a larger connected subgraph of G.
\downarrow Eccentricity
Assume $G=(V, E)$ is connected.

$$
e(v)=\max \{d(v, u) \mid u \in V\} .
$$

Example:

Q. Find the eccentricity of v_{1}.
A. $e(v)=\max \{d(v, u) \mid u \in V\}$.

$$
\begin{aligned}
e\left(v_{1}\right) & =\max \{d(1,2), d(1,3), d(1,4), d(1,5)\} \\
& =\max \{1,1,2,3\}=3 .
\end{aligned}
$$

Remark: $\operatorname{diam}(G)=\max \{e(v) \mid v \in V\}$
Remark: $\operatorname{radius}(G)=\min \{e(v) \mid v \in V\}$

Example:

Q. What is $e\left(V_{1}\right)$?
A. $e\left(V_{1}\right)=\infty$ because the graph is not connected so there is no path from v_{1} to the other vertices.

L Path-Graph
A graph P_{n} of order n is called a path graph if it is $v_{1}-v_{2}-v_{3} \ldots v_{n}$ where $v_{1}, v_{2}, \ldots v_{n}$ are distinct vertices.
Remark: Size of $P_{n}, n \geqslant 2$, is $n-1$.
Proof 1:
A path-graph is a tree. Since P_{n} is a tree of order n, we know previously that the size of a tree of order n is $n-1$.
Proof 2:

$$
\begin{gathered}
P_{n}: \quad v_{1} v_{2} v_{3} v_{4} \cdots v_{n} \\
\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{n}\right)=1 \\
\operatorname{deg}\left(v_{i}\right)=2 \quad \forall 1<i<n \\
\sum \operatorname{degrees}=2|E| \\
2(n-2)+2=2|E| \\
|E|=n-1
\end{gathered}
$$

Q. Is P_{5} a bipartite?
A.

$$
v_{1}-v_{2}-v_{3}-v_{4}-v_{5}
$$

A:

Yes. Any P_{n} is a bipartite if we pick every alternate vertex to be in the same set.

Remark: $\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$
Q. Find $\gamma\left(P_{11}\right)$ and construct smallest dominating set.
A.

$$
\begin{aligned}
& \text { A. } \begin{array}{l}
\gamma\left(P_{11}\right)=\left\lceil\frac{11}{3}\right\rceil=4 \\
\quad\left\{v_{2}, v_{5}, v_{8}, v_{11}\right\} \\
x-v_{2}-v_{3}-v_{4}-v_{5}-x_{6}-v_{7}-v_{8}-v_{9}-v_{10}-v_{11}
\end{array} \text { v }
\end{aligned}
$$

\rightarrow Cycle Graph
A graph C_{n} of order n and size n is called a cycle graph if it is of the form $v_{1}-v_{2}-v_{3} \ldots v_{n}-v_{1}$, where $v_{1}, v_{2}, \ldots v_{n}$ are distinct vertices.

Remark: C_{n} is a bipartite of n is even.

Example:

A:
$B:$

Remark: $\gamma\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$
Q. Find $\gamma\left(c_{10}\right)$ and construct smallest dominating set.

$$
\begin{aligned}
& \text { A. } \gamma\left(c_{10}\right)=\left\lceil\frac{10}{3}\right\rceil=4 \\
& \quad\left\{v_{2}, v_{5}, v_{8}, v_{10}\right\} \\
& v_{1}-v_{2}-x_{3}-v_{4}^{x}-v_{5}-x_{6}-v_{7}-\left(v_{8}\right)-v_{9}-\left(v_{16}-v_{1}\right.
\end{aligned}
$$

Example:

$$
\begin{gathered}
\gamma(G)=2 \\
\left\{v_{f}, v_{1}\right\}
\end{gathered}
$$

Example:

$$
\begin{aligned}
& \gamma(G)=3 \\
& \left\{v_{1}, v_{4}, v_{10}\right\}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \gamma(G)=2 \\
& \left\{v_{3}, v_{4}\right\}
\end{aligned}
$$

\checkmark Spanning Trees
Remark: Every connected graph G has a spanning subgraph that is a tree.

Example:

Example:

Q. Give me a spanning tree of G.
A.

$$
\begin{aligned}
& G-\left\{v_{2}-v_{5}, v_{1}-v_{4}\right\} \\
& G-\left\{v_{3}-v_{6}, v_{1}-v_{4}\right\}
\end{aligned}
$$

\rightarrow Cut -Vertex
Let $G=(v, E), v \in V$. We say v is a cut-vertex of G if $G-v$ is disconnected. When we remove V from G, we also remove all edges that are connected to V.
Q. $G(V, E)$ is connected such that $\operatorname{deg}(V)=1$. Is it possible that $G-v$ is disconnected?
A. No. Since $\operatorname{deg}(v)=1, v$ is connected to one and only vertex, say w, of G, so by removing $v, G-v$ is connected of order $n-1$ and size $m-1$.
Remark: If v is a cut-vertex of a connected graph $G(V, E)$, then $\operatorname{deg}(v) \geqslant 2$.

Example:

v_{1} is not a cut-vertex
Example:

v_{2} is not a cut-vertex
Example:

$$
\begin{gathered}
P_{4}-v_{3} \\
\stackrel{\circ}{v_{1}} \stackrel{\rightharpoonup}{v}_{2} \quad \dot{v}_{4}
\end{gathered}
$$

v_{3} is a cut-vertex

Example:

v_{2} is not a cut vertex

Remark: Let $G(V, E)$ be connected. $V \in V$ is a cut-vertex iff $\exists w, z \in V$ such that every path from w to z passes through V.

Example:
 v_{2} is a cut-vertex. We cannot find a path from v_{3} to v_{1} without passing v_{2}.
Q. Assume v is a cut vertex. Show $\exists w, z \in V$ such that every path from w to z passes through V.
A.

Since r is a cut vertex, $G-V$ is disconnected.
$\Rightarrow \exists w, z \in V$ that are not connected by a path.
\Rightarrow every path from w to 2 must pass through V.

\checkmark Bridge
an edge e is called a bridge iff Gee is disconnected.

Remark: if G is of order n and size m, and if v is a cut-vertex of G, then $G-v$ is of order $n-1$ and size $m-\operatorname{deg}(r)$.
Remark: if e is an edge, then $G-e$ is of order n and size $m-1$.

Example:

$v_{1}-v_{2}$ is a bridge

Remark: Let $G(V, E)$ be connected. An edge $e \in E$ is a bridge iff e is not an edge of any cycle of G.

Remark: C_{n} has no bridges.
Remark: In a tree or a Mn, every edge is a bridge.
Proof: Assume e is a bridge. We need to show that every cycle of G (if such a cycle exists) does not contain e as an edge.
\Rightarrow Assume C is a cycle of G such that e is an edge of C.
Hence, $G-e$ is connected since $C-e$ is connected. A contradiction!
\leftarrow Assume G does not have a cycle C where e is an edge of C. Show $G-e$ is disconnected (e is a bridge).

otherwise we form a cycle.
\rightarrow Cartesian Product
$G_{1} \square G_{2}$ when $V=\left\{(a, b) \mid a \in V_{1}, b \in V_{2}\right\}$ and two distinct vertices of V, say $\left(a_{1}, b_{1}\right)$, (a_{2}, b_{2}) are adjacent (connected by an edge) iff $a_{1}=a_{2}$ and $b_{1}-b_{2} \in E_{2}$ or $a_{1}-a_{2} \in E_{1}$ and $b_{1}=b_{2}$.

Example:

Vertices of $G_{1} \square G_{2}=V_{1} \times V_{2}=V$

$$
\begin{gathered}
V=\left\{\left(v_{1}, v_{4}\right),\left(v_{1}, v_{5}\right),\left(v_{2}, v_{4}\right),\left(v_{2}, v_{5}\right),\left(v_{3}, v_{4}\right),\right. \\
\left.\left(v_{3}, v_{5}\right)\right\}
\end{gathered}
$$

Remark: if G_{1} is of order n and G_{2} is of order m_{1} then $G_{1} \square G_{2}$ is of order $n m$.

4 How to Visualize $G_{1} \square G_{2}$
(1) At each vertex of G_{1} draw a copy of G_{2}.
(2) If $u, v \in V_{1}$ and $u-v \in E_{1}$, then connect the corresponding vertices of G_{2} with an edge.
Q. Draw $P_{3} \square C_{3}$

A.

Q. Draw $G_{1} \square G_{2}$.

A.

Q. Draw $G_{1} \square G_{2}$
G_{1}

$$
G_{2}
$$

A.

\rightarrow Hypercube $(n-$ cube $)$

$$
Q_{1}=K_{2}
$$

$$
Q_{2}=K_{2} \square K_{2}
$$

$$
Q_{3}=Q_{2} \square k_{2}
$$

$$
Q_{4}=Q_{3} \square K_{2}
$$

Remarks about Q_{n} :

$$
Q_{n}=Q_{n-1} \square K_{2}
$$

$|V|=2^{n}$, each vertex is n-string of 0 s and 1 s .
(1) 2 vertices in Q_{n} are connected by an edge iff they differ in one and only one place.
Q_{n} is $n-$ regular $(\operatorname{deg}(v)=n)$.

$$
|E|=n 2^{n-1}
$$

Proof:

$$
\begin{aligned}
& \sum \operatorname{deg}(v)=2|E| \\
& n 2^{n}=2|E| \\
& n 2^{n-1}=|E|
\end{aligned}
$$

$$
\operatorname{Girth}\left(Q_{n}\right), n \geqslant 2=4
$$

Qu is bipartite.

$$
\operatorname{Diam}\left(Q_{n}\right)=n
$$

Proof:
Consider Q_{4}. Find $d(0101,0010)$.

$$
0101-0001-0000-0010
$$

Path of length 3.

$$
0101-0001-0000-0010
$$

Path of length 3.
Can we find a path of length 2?

$$
0101-\square-0010
$$

No, because 0101 and 0010 differ in 3 places.
What about $d(000 \ldots 0,111 \ldots 1)$?

$$
d(000 \ldots 0,111 \ldots 1)=n .
$$

For $Q_{n}, d(v, w)=$ number of places where they differ.
\rightarrow Independent Set of Vertices
a subset I of V is called an independent set of vertices iff every 2 vertices in I are non-adjacent. (every 2 vertices in I are not connected by an edge).
L Maximum Independent Set the largest independent set.
\checkmark Maximum Independent Number $\alpha(G)=|M|$ where M is the max independent set.

Example:

Max Independent Set $\left\{v_{1}, v_{4}\right\}$ and $\left\{v_{2}, v_{3}\right\}$

$$
\alpha(G)=2
$$

Example:
G

Max Independent Set $=\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$

$$
\alpha(G)=4
$$

Remark: for a $K_{m, n}$, the max independent set will be the set $\max (m, n)$. and $\alpha\left(k_{m, n}\right)=\max (m, n)$.
$4>$ Vertex -Cover
a subset C of V is called a vertexcover of G iff every edge of G has a terminal vertex in C. (if $a-b$ is an edge of G, then $a \in C$ or $b \in C$).

Example:

$$
\text { Vertex -Cover }=\{v,\}
$$

G_{2}

$$
\text { Vertex }- \text { Cover }=\left\{v_{1}, v_{4}\right\}
$$

4 Vertex Cover Number
$B(G)=|C|$ where C is the Minimum vertex cover of G.

Remark: C is a vertex cover of V iff $V-C$ is an independent set.

Proof:
\Rightarrow Assume C is a vertex-cover. We need to show $V-C$ is an independent set of vertices.

Let $a, b \in V-C$. Show $a-b \notin E$. Hence, $a \in C$ or $b \in C$. A contradiction.
\Longleftarrow Assume $V-C$ is an independent set. Show C is a vertex-cover. Assume $a-b \in E$ for some $a, b \in V$. Show $a \in C$ or $b \in C$. Since $a-b \in E_{1}$ we conclude that a or $b \notin V-C$. because if both a, b in $V-C$ then we cannot have the edge $a-b$. if $a \notin V-C, a \in C$. if $b \notin V-C, b \in C$.

Remark: Assume C is a vertex-cover.

$$
|c|+|v-c|=|v|
$$

Remark: $\alpha(G)+\beta(G)=|V|=n$.
Proof: We know that $|c|+|V-c|=|v|$.
Assume C is a minimum vertex-cover set. Then $V-C$ is maximum independent set. So $|v-C|=\alpha(G)$ and $|c|=\beta(G)$.

Example:

Minimum vertexcover set of G

$$
c=\left\{v_{2}, v_{4}, v_{1}\right\}
$$

Maximum Independent Set $=V-C=\left\{v_{3}, v_{5}\right\}$

Example:
Minimum vertexcover set of $\mathrm{Bu}_{4,3}$

$$
C=\left\{v_{5}, v_{6}, v_{7}\right\}
$$

$$
\text { Maximum Independent Set }=V-C=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

Remark: If $B_{m i n}$ is connected, then $\beta(G)=\min \{m, n\}$ and $\alpha(G)=\max \{m, n\}$

Remark: Domination set is not always the same as the vertex cover set.

Example:

$\left\{v_{1}, v_{4}\right\}$ is a minimum dominating set $\left\{v_{1}, v_{4}\right\}$ is not a vertex-cover set $\left\{v_{2}, v_{3}\right\}$ is both a minimum dominating set and a minimum vertex-cover set.

Remark: Every vertex-cover is a dominating set, but not every dominating set is a vertex-cover.

Remark: Let $G(V, E)$ be a connected graph and C be a set of vertices. If C is a minimum vertex cover, then C is a dominating set but need not be a minimum dominating set.

Example:

$$
x\left(k_{3,3}\right)=2
$$

$\left\{v_{1}, v_{4}\right\}$ min dom. set

$$
\beta\left(\mu_{3,3}\right)=3
$$

$$
\left\{v_{1}, v_{2}, v_{3}\right\} \quad \min _{\text {cover set. }}
$$

Remark: Assume $G(V, E)$ is connected of order n. Then $\alpha(G)+\gamma(G)=n$.
Proof: Let C be a minimum vertex cover of G. Then $\beta(G)=C_{1}=\gamma(G)$. Let M be a maximum independent set of vertices. Hence $\alpha(G)=|M|=C_{2}$. We know that $\alpha(\sigma)+\beta(G)=n$. Thus $\alpha(G)+\gamma(G)=n$.
Q. $G(V, E)$ is connected and of order M. say M is a maximum independent set such that $|M|=m, m<n$. Find a minimum dominating set and find $\gamma(G)$.
A.

$$
\begin{aligned}
& C=V-M \\
& \text { minimum } \quad \text { minimum } \\
& \text { vertex cover }=\text { dominating set }
\end{aligned}
$$

So C is the minimum dominating set.

$$
\begin{aligned}
& \alpha(G)+\gamma(G)=n \\
& m+\gamma(G)=m \\
& \gamma(G)=n-m
\end{aligned}
$$

\rightarrow Matching Subgraph
(1) A subgraph $H\left(V_{1}, E_{1}\right)$ of G is called matching iff for every $w \in V_{1}$,

$$
\operatorname{deg}(w)=1
$$

(2) A subgraph $H\left(V_{1}, E_{1}\right)$ of G is called matching iff every edge in E_{1} has no common vertex with every other edge in E_{1}. In other words, if $a-b$ and $c-d \in E_{1}$, then a, b, c, d are distinct vertices.

Example:

Example:

Q. Does G have a matching subgraph of size 3 ?
A. Yes. $H=\left\{v_{2}-v_{3}, v_{4}-v_{5}, v_{7}-v_{8}\right\}$.

Example:

Q. Find a maximum matching subgraph.
A.

$$
\begin{aligned}
& H=\left\{v_{1}-v_{2}, v_{3}-v_{5}\right\} \text { or } \\
& H=\left\{v_{2}-v_{3}, v_{4}-v_{5}\right\}
\end{aligned}
$$

4 Matching Number
the size of the maximum matching subgraph.

$$
m(G)=|M| .
$$

Example:

$$
\begin{gathered}
H=\left\{v_{1}-v_{2}, v_{3}-v_{5}, v_{4}-v_{6}\right\} \\
m(G)=3
\end{gathered}
$$

Example:

Example:

$$
\begin{aligned}
& M=\left\{v_{1}-v_{2}, v_{3}-v_{4}\right\} \\
& \text { or } \\
&\left\{v_{1}-v_{3}, v_{2}-v_{4}\right\} \\
& m(G)=2
\end{aligned}
$$

Example:

$$
B_{6,5}
$$

$$
\begin{gathered}
M=\left\{v_{2}-v_{5}, v_{3}-v_{6}, v_{4}-v_{8}, v_{10}-v_{9}, v_{1}-v_{7}\right\} \\
m\left(B_{6,5}\right)=5
\end{gathered}
$$

Remark: Assume G is $B_{m, n}$ such that $|A|=m,|B|=n$, and $m>n$. Let h be number of vertices in A that are connected to some vertices in B and let k be the number of vertices in B that are connected by an edge to some vertices in A. Then $m(G)=\min (h, k)$.

Example:

$$
k=4
$$

\# of vertices in A connected to some vertices in B.

$$
h=2
$$

\# of vertices in

$$
m(6)=\min (4,2)=2
$$

B connected to

$$
M=\left\{v_{3}-v_{6}, v_{4}-v_{9}\right\}
$$

some vertices in A.

Perfect Matching
Let M be a matching set, say M.
$M=\left\{a_{1}-b_{1}, a_{2}-b_{2}, \ldots\right\}$ and
$V_{1}=\{a, b \mid a-b \in M\}$. If $V_{1}=V$, we say M is a perfect matching.

Example:

$$
\begin{aligned}
& M=\left\{v_{1}-v_{2}, v_{3}-v_{4}\right\} \\
& v_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=v
\end{aligned}
$$

Example:

No perfect match.

$$
\begin{aligned}
M= & \left\{v_{1}-v_{2}, v_{4}-v_{5}\right\} \text { or } \\
& \left\{v_{1}-v_{2}, v_{3}-v_{4}\right\} \\
v_{m}= & =\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \neq v
\end{aligned}
$$

Example:

$$
\begin{aligned}
P_{6} & : \quad v_{1}-v_{2}-v_{3}-v_{4}-v_{5}-v_{6} \\
M & =\left\{v_{1}-v_{2}, v_{3}-v_{4}, v_{5}-v_{6}\right\} \\
& v_{m}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}=v
\end{aligned}
$$

Remark: every perfect match is a maximum match but not every maximum match is a perfect match.

Remark: C_{n} or P_{n} have a perfect matching iff n is even, and $m(C n)$ or $m\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor=\frac{n-1}{2}$.
Remark: $k_{m, n}$ has a perfect matching iff $m=n$.
Proof: $m(k m, n)=\min (m, n)$. So to have perfect matching, $m=n$.
\rightarrow Edge Cover
A subset $E_{C} C E$ is called edge-cover of G iff $\forall a \in V, \exists$ an edge $a-b \in E_{C}$ for some $b \in V$.
\rightarrow Minimum Edge -Cover Number $\operatorname{Be}(G)=\left|E_{c}\right|$ such that E_{c} is a minimum edge-cover.

Example:

NO EDGE-COVER
(because the graph has isolated vertices)

Example:

$$
\begin{gathered}
E_{c}=\left\{v_{1}-v_{5}, v_{2}-v_{6}, v_{3}-v_{7}, v_{4}-v_{7}\right\} \\
\beta_{e}(G)=4
\end{gathered}
$$

Remark: If $G(V, E)$ has no isolated vertices, then $m(G)+\beta_{e}(G)=n$.

Example:

$$
\begin{aligned}
& M=\left\{v_{1}-v_{3}, v_{2}-v_{4}\right\} \\
& m(G)=2 \\
& E_{C}=\left\{v_{1}-v_{2}, v_{3}-v_{4}\right\} \\
& \operatorname{Be}(G)=2
\end{aligned}
$$

$$
\begin{gathered}
m\left(c_{4}\right)+\beta_{e}\left(c_{4}\right)=n \\
2+2=4
\end{gathered}
$$

\rightarrow Incidence
For $G(V, E), e \in G, e=a-b$ for some $a, b \in V$. Then we say e is incident at a (and e is incident at b). If e is incident at a vertex a, it means $e=a-b$ or $e=b-a$.

Remark: $\operatorname{deg}(v)=$ number of edges that are incident at V.

Example:

Q. Find the incidence matrix.
A. Incidence Matrix:

	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}
v_{1}	1	1	0	0	0	1
v_{2}	1	0	0	1	0	0
v_{3}	0	0	0	1	1	0
v_{4}	0	0	1	0	1	1
v_{5}	0	1	1	0	0	0

4 Line Graph
$e_{n}, e_{m}, n \neq m, \in V(L(G))$ are connected by an edge iff e_{n}, em, have a common vertex in G (are incident at some vertex of G).

Example:
k_{3}

$$
K_{3} \approx L\left(K_{3}\right)
$$

Example:

$$
L\left(K_{1,3}\right) \approx K_{3}
$$

Assume $L\left(G_{1}\right) \approx L\left(G_{2}\right)$. Is $G_{1} \approx G_{2}$?
A. No. Take the example above. $L\left(K_{3}\right) \approx L\left(K_{1,3}\right)$ but $K_{3} \not \approx K_{1,3}$.

Example:

$$
\begin{gathered}
P_{4}: e_{v_{1}}^{e_{1}} v_{2}^{v_{2}} e_{v_{3}}^{e_{3}} v_{4} \\
L\left(P_{4}\right):
\end{gathered}
$$

Example:

$L(G)$

Remark: Assume G is of order n and size m. Let $V=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ be the set of vertices of $G . d_{1}, d_{2}, \ldots d_{n}$ are the degrees of $v_{1}, v_{2}, \ldots v_{n}$ respectively. Then $L(G)$ is of order m and size

$$
\frac{d_{1}^{2}+d_{2}^{2}+\cdots d_{n}^{2}-2 m}{2}
$$

Proof:
Choose a vertex $V_{i}, 1 \leqslant i \leqslant n$. d_{i} 's edges are connected to v_{i}. There are $\binom{d i}{2}$ edges you can choose from di. Number of edges in $L(G)$ that connect the di's edges (di's vertices in $L(G)$):

$$
\begin{aligned}
& =\binom{d_{1}}{2}+\binom{d_{2}}{2}+\cdots\binom{d_{n}}{2} \\
& =\frac{d_{1}\left(d_{1}-1\right)}{2}+\frac{d_{2}\left(d_{2}-1\right)}{2}+\cdots \frac{d_{n}\left(d_{n-1}\right)}{2} \\
& =\frac{d_{1}^{2}+d_{2}^{2}+\cdots d_{n}{ }^{2}-\left(d_{1}+d_{2}+\cdots d_{n}\right)}{2} \\
& =\frac{d_{1}{ }^{2}+d_{2}{ }^{2}+\cdots d_{n}{ }^{2}-2|E|}{2}
\end{aligned}
$$

Q. Assume a graph of order 5 has degrees $3,2,1,1,1$. Find the order and size of $L(G)$.
A. Order of $L(G)=$ size of G

$$
=\frac{\sum \operatorname{deg}(v)}{2}=\frac{3+2+1+1+1}{2}=4
$$

Size of $L(G)=\frac{d_{1}^{2}+d_{2}^{2}+\cdots d_{n}^{2}-2 m}{2}$

$$
=\frac{3^{2}+2^{2}+1^{2}+1^{2}+1^{2}-2(4)}{2}=4
$$

Remark: Let ω be a vertex in $L(G)$ (so ω is an edge in $G)$. Then, $\operatorname{deg}(w)$:

$$
\begin{aligned}
& \operatorname{deg}(w)=\operatorname{deg}(a)+\operatorname{deg}(b)-2 \text {, where } \\
& w=a-b \in E_{G} \text { and } a, b \in V_{G} \text {. }
\end{aligned}
$$

Proof: assume h is adjacent to w in $L(G)$. Then h and w have either a as a common vertex, or b as a common vertex.

$$
\begin{aligned}
\operatorname{deg}(w) & =[\operatorname{deg}(a)-1]+[\operatorname{deg}(b)-1] \\
& =\operatorname{deg}(a)+\operatorname{deg}(b)-2
\end{aligned}
$$

4 Eulerian Graph
a graph of order n and size m is called Eulerian iff it is connected and F_{m} is a subgraph of G, where F_{m} is a "fake-cycle" with m edges and order $n \leqslant m$ (i.e. vertices are allowed to be repeated).

Example:

in the cycle, we visit each edge exactly once, where vertices can be visited more than once.

Example:

NOT EULERIAN
F_{8} cannot be constructed
Example:

EULERIAN

$$
F_{9}: v_{2}-v_{1}-v_{3}-v_{4}-v_{5}-v_{6}-v_{7}-v_{5}-v_{3}-v_{2}
$$

Remark: "fake cycle" is a circuit.
Remark: a connected graph G is Eulerian iff $\operatorname{deg}(v)$ is an even integer $\geqslant 2$ for every $V \in V$.

Proof:
\rightarrow Assume G is of order n.
First we show that G such that degree of each vertex $\geqslant 2$, contains a cycle.

if $v_{3}-v_{1}$ is an edge, we will have a cycle. if not, then:

if $v_{4}-v_{i}, 1 \leqslant i \leqslant 2$, is an edge, we will have a cycle.
And so on... but this process must terminate because the graph is of finite order n.

Hence at some point we must have $v_{k}-v_{i}$ as an edge for some $1 \leqslant i \leqslant k-2$.
\longrightarrow Assume G is Eulerian.
We need to show that the degree of each vertex is an even integer $\geqslant 2 . G$ has order n and size m.

$$
F_{m}: v_{1}-v_{2}-v_{3}-\cdots-v_{k}-v_{1}
$$

has m distinct edges (but vertices need not be distinct.)

Every time we visit a vertex V_{i} in $F_{m_{1}}$ there will be 2 edges connected to V_{i}. Since the edges of F_{m} are distinct, we conclude $\operatorname{deg}\left(r_{i}\right)=2 k$ for some $k \geqslant 1$.
\longleftarrow Assume degree of each vertex of G is an even integer $\geqslant 2$.
We need to show G is Eulerion. Since the degree of each vertex $\geqslant 2$, we already proved that G must have a
cycle C. If C contains all edges of G, then we are done.
\longleftarrow Assume C does not contain all edges of G.
We need to prove the converse by induction. Assume every connected graph with even degree vertices and of size $<m$ is Eulerian. Remove all edges from C.

Example:

Remove all edges from C.
G

G becomes disconnected.
Let $H_{1}, H_{2}, \ldots H_{k}$ be the components of G

The degree of each vertex of every component is either 0 or an even integer. Each component must have at least one vertex of c.
H_{1} must contain a vertex of C_{1} say v_{1}. Size of $H_{1}<m$, and degree of each vertex of H_{1} is even and H_{1} is connected, so it must have a circuit.

$$
v_{1}-v_{2}-v_{5}-v_{4}-v_{1}
$$

\rightarrow Semi-Eulerian
a connected graph is called semi- Eulerian if there is a fake path
$a-v_{1}-v_{2}-\cdots v_{k}-b_{1}$ where $a \neq b_{1}$ and the vertices need not be distinct. It has all edges of G.

Remark: "fake path" is a trail.

Remark: a connected graph is semiEulerian iff exactly 2 vertices are of odd degree.

Proof:
\longrightarrow Assume G is semi-Eulerian.
Fake path: $\underbrace{v_{1}-v_{2}-v_{i}-v_{1}-\cdots v_{k}}_{v_{1} \neq v_{k}}$ must use all edges
degree of each vertex is even except V_{1}, V_{k}.
Remark: Eulerian graph can never be semi-Eulerion.
\rightarrow Hamiltonian Graph
a connected graph G of order n and size m is called Hamiltonian iff C_{n} is a subgraph of G.
Remark: a connected graph G of order n and size m is called Hamiltonian Path iff P_{n} is a subgraph of G.

NOT EULERIAN every vertex should have even degree
SEMI-EULERIAN
exactly 2 vertices are odd degree
HAMILTONIAN

$$
c_{5}: v_{1}-v_{2}-v_{5}-v_{4}-v_{3}-v_{1}
$$

HAMILTONIAN PATH

$$
P_{5}: v_{1}-v_{2}-v_{5}-v_{4}-v_{3}
$$

Remark: Assume G is connected and of order n. Assume that $\operatorname{deg}(x)+\operatorname{deg}(y) \geqslant n$ for every non-adjacent vertices x, y. Then G is hamiltonian.
Q. Construct a Hamiltonian graph of order 7 .
A. Easiest example: C_{7}.

Example:

HAMILTONIAN

$$
c_{8}: v_{1}-v_{2}-v_{3}-v_{4}-v_{7}-v_{6}-v_{5}-v_{8}-v_{1}
$$

HAMILTONIAN PATH

$$
P_{8}: v_{1}-v_{2}-v_{3}-v_{4}-v_{7}-v_{6}-v_{5}-v_{8}
$$

$L>$ Petersen Graph
connected, order 10, size 15 , has this shape:

NOT EULERIAN every vertex should have even degree

NOT SEMI-EULERIAN exactly 2 vertices should be odd degree

NOT HAMILTONIAN cannot construct C_{10}

HAMILTONIAN PATH

$$
P_{10}: v_{1}-v_{2}-v_{3}-v_{4}-v_{5}-v_{9}-v_{6}-v_{8}-v_{10}-v_{7}
$$

Remark: Peterson Graph becomes Hamiltonian when we remove 1 vertex from it.

Example:

HAMILTONIAN

$$
C_{q}:
$$

$$
\begin{aligned}
& : V_{2}-v_{3}-v_{4}-v_{5}-v_{9} \\
& -v_{7}-v_{10}-v_{8}-v_{6}-v_{2}
\end{aligned}
$$

Remark: not every graph of order 10, size 15 is isomorphic to Peterson Graph.
Example:

Remark: $K n, m$ is Hamiltonian of $n=m$.
Example:

NOT HAMILTONIAN

if we start at a vertex in set A, we will end at a vertex in set A.
\triangle Chromatic Number
minimum number of colors needed to color the vertices of a graph such that every two adjacent vertices have a different color. It is denoted by $X(G)$.

4 Chromatic Index
minimum number of colors needed to color the edges of a graph so that every two incident edges have different colors. It is denoted by $X^{\prime}(G)$.

Example:

$$
\begin{aligned}
& x\left(k_{3}\right)=3 \\
& x^{\prime}\left(k_{3}\right)=3
\end{aligned}
$$

$$
\begin{aligned}
& x\left(k_{4}\right)=4 \\
& x^{\prime}\left(k_{4}\right)=3
\end{aligned}
$$

Remark: $x\left(k_{n}\right)=n$.
Proof: there is an edge between every 2 vertices in a $k n$, so all the vertices should have a different color. So there should be n colors.

Remark: $X^{\prime}\left(K_{n}\right)=n-1$ if n is even $x^{\prime}\left(k_{n}\right)=n$ if n is odd

Remark: $\mathcal{X}\left(k_{n}, m\right)=2$
Proof: A :

the vertices in the same set can have the same color because they are not adjacent

Remark: $X^{\prime}\left(k_{n}, m\right)=\max (n, m)$.
Example:

Remark: $\mathcal{X}\left(B_{n}, m\right)=2$ iff not all vertices are isolated.
Remark: $\mathcal{X}(C n)=2$ if n is even $x\left(C_{n}\right)=3$ if n is odd
$X^{\prime}(C n)=2$ if n is even $x^{\prime}\left(C_{n}\right)=3$ if n is odd

Proof: if C_{n} has even order, that means number of edges are even, which means it is a Bn,m.

Remark: $\mathcal{X}\left(P_{n}\right)=2, X^{\prime}\left(P_{n}\right)=2$.
Proof: every P_{n} is a $B_{n, m}$.
Remark: $X^{\prime}(G)=X(L(G))$.
\rightarrow Maximum Degree
denoted by $\Delta(G)$, it is the maximum degree of a vertex in G.
Remark: $X^{\prime}\left(B_{n, m}\right)=\Delta\left(B_{n, m}\right)$.
$L>$ Brooke's Theorem
Let G be a connected graph such that $G \neq k_{n}$ and $G \neq C_{m}$ for some odd integer m. Then $X(G) \leqslant \Delta(G)$.
Example:

$$
\begin{aligned}
& \Delta\left(k_{4}\right)=3 \text { because } k_{4} \text { is 3-regular. } \\
& x\left(k_{4}\right)=\Delta\left(k_{4}\right)+1=4 \\
& \Delta\left(c_{n}, n \text { is odd }\right)=2 \\
& x\left(c_{n}, n \text { is odd }\right)=\Delta\left(c_{n}, n \text { is odd }\right)+1=3
\end{aligned}
$$

Example:

G is not $k n$ G is not C_{n}, n is odd

$$
\begin{aligned}
& \Delta(G)=3 \\
& x(G) \leqslant 3 \\
& x(G)=3
\end{aligned}
$$

Remark:

$$
\begin{aligned}
& x\left(k_{n}\right)=\Delta\left(k_{n}\right)+1 \\
& x\left(c_{n}, n \text { is odd }\right)=\Delta\left(c_{n}, n \text { is odd }\right)+1
\end{aligned}
$$

Remark: minimum $X^{\prime}(G) \geqslant \Delta(G)$ maximum $x(G)=\Delta(G)+1$

Remark: $X^{\prime}(G)=\Delta$ or $X^{\prime}(G)=\Delta+1$
Q. When is $X^{\prime}(G)=\Delta(G)+1$?
A. When $L(G)=K n$ or $L(G)=C_{n}$, n is odd. (Brooke's theorem, plus $X^{\prime}(G)=L(G)$ theorem).

Remark: $x^{\prime}\left(k_{1, n}\right)=x\left(k_{n}\right)=n$.
Example:

Example:

$$
x^{\prime}(6)=\Delta(G)=3
$$

Remark: If G is not connected, $X^{\prime}(G)$ will be the max $X^{\prime}(G)$ from all components. $x(G)$ will be the max $x(\theta)$ from all components.

Remark: If G is connected, and k-regular of order n, where n is odd, then

$$
X^{\prime}(G)=\Delta(G)+1=k+1 .
$$

Remark: For a tree $T, x(T)=2$, and $X^{\prime}(T)=\Delta(T)$.
\rightarrow Planar Graph
a connected graph G is called planar if it can be drawn on a piece of paper so that the edges only intersect at the vertices.

Example:

\rightarrow Faces of Planar Graphs
a face has to be a cycle that cannot be divided into smaller cycles. By default, every planar graph has a trivial face called the 1-face which is the entire paper.

Example:

PLANAR

Face 1: $v_{1}-v_{2}-v_{4}-v_{1}$
Face 2: $v_{1}-v_{3}-v_{4}-v_{1}$
Face 3: $v_{4}-v_{3}-v_{2}-v_{4}$
Trivial: the whole paper

Example:
Face 1: $v_{2}-v_{3}-v_{4}-v_{5}-v_{2}$
Face 2: $v_{1}-v_{2}-v_{5}-v_{4}-v_{7}$

$$
-v_{6}-v_{1}
$$

Trivial: the whole paper

PLANAR

Example:

Face 1: $v_{1}-v_{2}-v_{8}-v_{1}$
Face 2: $v_{2}-v_{3}-v_{5}-v_{8}-v_{2}$
Face 3: $v_{5}-v_{7}-v_{8}-v_{5}$
Trivial: the whole paper

Remark: Let G be a connected planar graph of order n and size m and f number of faces. Then $n-m+f=2$

Proof: Assume the result is true for a planar graph of order n and size m. Take C_{3} as an example.

$$
3-3+2=2
$$

$$
4-4+2=2
$$

$$
5-5+2=2
$$

$$
5-6+3=2
$$

If we add a new edge, we will add a new vertex, so no change. If we add an edge to an existing vertex, we will form another cycle, and consequently, another face. So the formula $n-m+f=2$ is always true.

Remark: Assume G is planar, of order n and size m. Then $3 f \leqslant 2 \mathrm{~m}$.
Proof: Assume each face consists of C_{3}. The default face has all edges of G. Then $3 f \leqslant 2 \mathrm{~m}$.

Remark: Assume G is planar, of order n and size m. Then $m \leqslant 3 n-6$
Proof:

$$
\begin{aligned}
& n-m+f=2 \\
& n-m+\frac{2 m}{3} \geqslant 2 \\
& 3\left(n-m+\frac{2 m}{3}\right) \geqslant 6 \\
& 3 n-6 \geqslant m
\end{aligned}
$$

Remark: We could have a graph that satisfies $m \leqslant 3 n-6$, but it is not planar.
Example:
$K_{3,3}$
Yet it still satisfies
NON -PLANAR

$$
\begin{aligned}
& m \leqslant 3 n-6 . \\
& 9 \leqslant 3(6)-6=12
\end{aligned}
$$

Remark: Assume G is planar, of order n and size m and girth $k, k \geqslant 3, k \neq \infty$. Then $k f \leqslant 2 m$.
Q. Show that $k_{3,3}$ is non-planar.
A. Assume $k_{3,3}$ is planar. Then:

$$
\begin{aligned}
n-m+f & =2 \\
3-9+f & =2 \\
f & =5
\end{aligned}
$$

$\operatorname{Girth}\left(k_{3,3}\right)=4$, Hence $4 f \leqslant 2 \mathrm{~m}$.
But $4(5) \neq 2(9)=18$. Contradiction.
Remark: k_{n} is planar if $2 \leqslant n \leqslant 4$.
Q. Convince me that k_{5} is non-planar.
A. For $k_{5}, m=10, n=5$.

Is $m \leqslant 3 n-6$?

$$
10 \leqslant 3(5)-6=9
$$

Thus K_{5} is not planar.
Q. Is $k_{3,2}$ planar?
A. Assume it is planar. Then:

$$
\begin{aligned}
n-m+f & =2 \\
5-6+f & =2 \\
f & =3
\end{aligned}
$$

$\operatorname{Girth}\left(k_{3,2}\right)=4$, Hence $4 f \leqslant 2 m$.
$4(3) \leqslant 2(6)=12$ is satisfied.
But this is not enough to prove it is planar, because even a non-planar graph may satisfy these equations.

Let's see if we can draw it:

Yes it is planar.

Remark: $K_{n, m}$, where $n \geqslant 3, m \geqslant 3$, is non-planar.
Proof: $k_{3,3}$ is a subgraph of $k_{n, m}$ when $n \geqslant 3, m \geqslant 3$. We already proved $k_{3,3}$ is non-planar.
Q. Is Petersen Graph planar?
A. Assume it is planar. Then:

$$
\begin{aligned}
n-m+f & =2 \\
10-15+f & =2 \\
f & =7
\end{aligned}
$$

$$
\begin{aligned}
& \text { Girth }(\text { Pet })=5 \text {, Hence } \\
& 5 f \leqslant 2 \mathrm{~m} \text {. But } \\
& 5(7) \$ 2(15) \text {. Contradiction. }
\end{aligned}
$$

Remark: Q_{2} and Q_{3} are planar. But $Q_{n}, n \geqslant 4$ is non-planar.
L Subdivision Graph
Example:

\triangle Kuratowski's Theorem
A connected graph G is planar iff G does not have a subgraph that is a subdivision of $K_{3,3}$ or K_{5}.
Example: Q_{4} is not planar.
This means it has a subgraph that is a subdivision of $k_{3,3}$ or k_{5}.

We will show that it has a subgraph that is a subdivision of $k_{3,3}$.

SUBDIVISION of $K_{3,3}$

Remark: If girth $(G)=4$, and G is planar, then $m \leqslant 2 n-4$.

Proof: $\quad n-m+f=2$

$$
\begin{aligned}
n-m+\frac{m}{2} & \geqslant 2 \\
2\left(n-m+\frac{m}{2}\right) & \geqslant 4 \\
2 n-4 & \geqslant m
\end{aligned}
$$

Q. Is Q4 planar?
A. $\operatorname{girth}\left(Q_{4}\right)=4 \quad n\left(Q_{4}\right)=2^{4}=16$

$$
m\left(Q_{4}\right)=4 \cdot 2^{4-1}=32
$$

Is $m \leqslant 2 n-4 ? \quad 32 \leqslant 2(16)-4=28$
No it is not planar.

Remark: $K_{n, 2}$ is planar for any n.
Proof: $K n, 2$ will never have a subgraph that is a subdivision of $k_{3,3}$ or k_{5}. (Kuratowski's Theorem).

Example:

Q. Show G is not planar.
A. First we try with the formulas.

Try: $m \leqslant 3 n-6$
$m=\frac{4 \times 9}{2}=18$ since it is 4 -regular.
$18 \leqslant 3(9)-6=21 \quad$ Satisfied.

Try: $3 f \leqslant 2 m$

$$
\begin{aligned}
& n-m+f=2 \\
& 9-18+f=2 \longrightarrow f=11 \\
& 3(11) \leqslant 2(18) \\
& 33 \leqslant 36 \quad \text { satisfied. }
\end{aligned}
$$

Since the formulas are satisfied, we move on to Kuratowski's Theorem.

By Kuratowski's Theorem, G should have a subgraph that is a subdivision of $<3,3$.

Therefore G is not planar.

L Dijkstra's Algorithm
Construct a tree so that the weighted path between every 2 vertices is minimum.
Example:

V	A	B	C	D	E	F	G	H
A	0	8_{A}	2_{A}	S_{A}	∞	∞	∞	∞
C	-	8_{A}	2_{A}	4_{C}	7_{C}	∞	∞	∞
D	-	σ_{D}	-	4_{C}	5_{D}	10_{D}	7_{D}	∞
E	-	6_{D}	-	-	5_{D}	10_{D}	σ_{E}	∞
B	-	6_{D}	-	-	-	10_{D}	σ_{E}	∞
G	-	-	-	-	-	8_{G}	6_{E}	12_{G}
F	-	-	-	-	-	8_{G}	-	1_{F}
H	-	-	-	-	-	-	-	Π_{F}

$4 \nabla k$-factor
$G(V, E)$ is connected. A spanning subgraph I that is k-regular is called k-factor of G.
Q. Does C_{5} have a 1-factor subgraph?
A. No.

$$
H=\left\{v_{1}-v_{2}, v_{3}-v_{4}\right\}
$$

v_{5} is missing.
Q. Does C_{b} have a 1 -factor subgraph?
A. Yes.

$$
\begin{aligned}
H= & \left\{v_{1}-v_{2}, v_{3}-v_{4},\right. \\
& \left.v_{5}-v_{6}\right\}
\end{aligned}
$$

Remark: a connected graph of order n has a 1 -factor spanning subgraph iff it has a perfect matching.
\checkmark Idea Behind k-factor
Example:

Example:

Remark: Petersen cannot be split into $\mathrm{H}_{1}, \mathrm{H}_{2}$, and H_{3}.

Remark: $k_{6,5}$ does not have a spanning subgraph that is k-regular, k is odd.
Proof: Assume H is spanning subgraph that is k-regular.

$$
\sum \operatorname{deg}(H)=K(11)=2\left|E_{H}\right|
$$

Thus, k cannot be odd.
$\rightarrow k$-factorable
a connected graph G is called k-factorable if $G=H_{1} \oplus H_{2} \oplus \ldots H_{m}$ where each H_{i} is a k-factor of G.
Conjecture (Open Problem)
Assume G is connected k-regular of order $n=2 h$.
(1) If h is odd and $k \geqslant h$, then G is 1-factorable.
(2) If h is even and $k \geqslant h-1$, then G is 1-factorable.

Example:

\[

\]

Remark. $K_{n, n}$ is 1-factorable.

$$
K_{n, n}=H_{1} \oplus H_{2} \oplus H_{3} \oplus \ldots H_{n}
$$ where each H_{i} is 1-factorable.

Remark: Let G be connected of order n. G has a 2-factor subgraph iff G has a Hamiltonian cycle.
Proof:
\rightarrow Assume G has a spanning 2 -regular subgraph. Then $H=v_{1}-v_{2} \ldots v_{n-1}$. This means G is Hamiltonian, with $H=C_{n}$. \longleftarrow Assume G is Hamiltonian. Then C_{n} is a spanning 2 -regular subgraph of G.
\downarrow Remark: $K_{n, m}$ has a 2-factor iff $n=m$ (since it will be Hamiltonian).

4 Remark: $k n, n \geqslant 3$, has 2 -factor.
Q. is $K_{4,4} 2$-factorable?
A. $K_{4,4}=H_{1} \oplus H_{2}$
(where each H_{i} is 2 -factor.)

\rightarrow Spectrum of Adjacency Matrix
Remark: If A is symmetric, then all eigenvalues of A are real. Thus, all eigenvalves of an adjacency matrix of a graph G are real.

Remark: For a $n \times n$ matrix A, α is an eigenvalue of A. \exists a point \neq $(0,0,0 \cdots, 0)$ such that $A\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]=\alpha\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]$

Remark: $n-1$ is an eigenvalue of $\operatorname{adj}\left(k_{n}\right)$.
Example:

$$
\begin{aligned}
& \begin{array}{llll}
v_{1} & v_{2} & v_{3} & v_{4}
\end{array} \\
& A=\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right] \\
& \operatorname{Adj}\left(\mathrm{K}_{4}\right)
\end{aligned}
$$

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
3 \\
3
\end{array}\right]=3\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Thus, $\alpha=3$ is an eigenvalue.

Remark: To find other eigenvalues, set $\left|x I_{n}-\operatorname{adj}\left(K_{n}\right)\right|=0$.

$$
x I_{n}-\operatorname{adj}\left(K_{n}\right)=\left[\begin{array}{ccccc}
x & -1 & -1 & \cdots & -1 \\
-1 & x & -1 & \cdots & -1 \\
\vdots & -1 & x & \cdots & -1 \\
-1 & -1 & -1 & \cdots & x
\end{array}\right]
$$

If we set $x=-1,\left|x I_{n}-\operatorname{adj}\left(K_{n}\right)\right|=0$.
So the eigenvalues are $n-1$ and -1 .
Remark: Characteristic polynomial of $\operatorname{adj}(k n)=(x-(n-1))(x+1)^{n-1}$
Remark: Eigenvalues of $\operatorname{adj}\left(k_{n}\right)$ are -1 repeated $(n-1)$ times and $n-1$ repeated once.
Remark: Characteristic polynomial of $\operatorname{adj}\left(k_{n}, m\right)=\left(x^{2}-n m\right) x^{n+m-2}$

Remark: Eigenvalues of $\operatorname{adj}\left(k_{n}, m\right)$ are 0 repeated $(n+m-2)$ times and $\sqrt{n m}$ and $-\sqrt{n m}$.

0.0.2 Class Notes Version II

MTH418-Graph Theory

BY Dara Varam
Instructor: Dr. Ayman Badawi

February 1st, 2021
Graphs: A graph consists of the following. $G=(V, E)$ where V is the set of vertices and E is the set of edges. Most of the semester, we will be dealing with undirected simple graphs.

We usually refer to vertices by dots, such as the following: • Every graph consists of both vertices and edges. Let us look at an example of a graph.

A vertex is each of the v_{1}, v_{2}, v_{3} shown on the graph above. On the other hand, an edge is a line segment that connects two vertices. In the graph above, we have three vertices and two edges, and they are denoted as follows:

$$
E=\left\{v_{1}-v_{2}, v_{1}-v_{3}\right\}
$$

We could also use the following notation to denote edges: $E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\}\right\}$. In our case, we have that $|V|=3$ and $|E|=2$.

What do we mean when we say that a graph is undirected? It means that there essentially is no arrow. There is no difference between $v_{1}-v_{2}$ and $v_{2}-v_{1}$. Later on, we will see examples of graphs that are directed. In that case, the aforementioned edges are distinct.

What do we mean when we say that a graph is simple? Vertices do not have loops, meaning that they do not go to themselves, and there is only at most one edge between any two vertices. Let us see an example of a graph that is NOT simple.

Clearly v_{2} goes to itself and there are two edges between v_{3} and v_{1}. Therefore, our graph is not simple, although it is still undirected. Consider the following graph:

Clearly we can see that we have $G=(V, E)$. By staring, we have that this graph is both undirected and simple. The sets are given as follows:

$$
\begin{gathered}
V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
E=\left\{v_{1}-v_{2}, v_{2}-v_{3}, v_{3}-v_{4}, v_{1}-v_{4}, v_{1}-v_{3}\right\}
\end{gathered}
$$

Clearly it is obvious that $|V|=4$ and $|E|=5$.
Consider the graph shown below:

In general, the degree of a vertex v_{i} is the number of edges that are connected to it. For example, we have the following: $\operatorname{deg}\left(v_{1}\right)=3, \operatorname{deg}\left(v_{2}\right)=2=\operatorname{deg}\left(v_{6}\right)$. We also have that $\operatorname{deg}\left(v_{4}\right)=\operatorname{deg}\left(v_{5}\right)=$ $\operatorname{deg}\left(v_{7}\right)=1$. Finally, $\operatorname{deg}\left(v_{3}\right)=4$. These are the degrees both each of the 7 vertices in our graph. Note that, once again, the graph is both simple and undirected.

Now, look at the example provided:

Then we have that $\operatorname{deg}\left(v_{3}\right)=0$. Note that 0 is an even number.
Fact: The sum of the degrees of each vertex in a graph is equal to 2 times the number of edges. Mathematically:

$$
\sum_{i=1}^{n} \operatorname{deg}\left(v_{i}\right)=2 \times|E|
$$

Similarly, we can rearrange this to get the number of edges in a graph: $|E|=\frac{\sum_{i=1}^{n} \operatorname{deg}\left(v_{i}\right)}{2}$.
Proof: Since each edge is counted twice and calculating all the degrees, then we can divide by 2 to get the number of edges. This should be common knowledge in graph theory.

Question: Let K be the number of vertices that have odd degrees. Convince me that K is an even number. In other words, what we are trying to say is that we cannot have a graph with 6 vertices, where $\operatorname{deg}\left(v_{1}\right)=1, \operatorname{deg}\left(v_{2}\right)=3, \operatorname{deg}\left(v_{3}\right)=1, \operatorname{deg}\left(v_{4}\right)=2, \operatorname{deg}\left(v_{5}\right)=4, \operatorname{deg}\left(v_{6}\right)=2$. We cannot have such a graph. Why?

Clearly we can see that our K in the example provided is 3 . If our claim is true, then this example cannot result in a graph.

Solution: Since the sum of the degrees is $2 \times|E|$, then it must be an even number. However, if we have an odd number of vertices with odd degrees, then we cannot have an even number as the sum. Let us take $O=$ \{set of all vertices with odd degrees $\}$ and $N=\{$ set of all vertices with even degrees $\}$. Mathematically, we have that:

$$
\sum_{v \in O} \operatorname{deg}(v)+\sum_{v \in N} \operatorname{deg}(v)=\sum_{i=1}^{n} \operatorname{deg}\left(v_{i}\right)=2 \times|E|
$$

Thus the sum of the degrees of vertices from O and N must produce an even number, and there we have our solution.

Look at the graph below:

Our question is to find the distance between the vertices v_{1} and v_{4}. i.e. Find $d\left(v_{1}, v_{4}\right)$. Note that this is an unweighted graph, meaning that the edges do not have a numerical value associated to their "weights." In that case, what exactly do we mean by the distance?

$$
d\left(v_{1}, v_{4}\right)=\text { length of shortest path }
$$

Paths: Let us take an arbitrary example, between two vertices V and W.

$$
V-v_{1}-v_{2}-W
$$

A path is a sequence of edges from V to W. Every edge is a path, but not every path is an edge. For example, in the above graph, we can see that $v_{1}-v_{5}-v_{4}$ is a path, but it is not an edge, since it is not between 2 vertices. The length of a path is the number of edges you use to go from one edge to another.

With that being made clear, we can see that there are two different paths between v_{1} and v_{4}, but the distance is the length of the shortest path, which would be 2 .

$$
v_{1}-v_{5}-v_{4}
$$

Look at the following graph:

We can see that $d\left(v_{1}, v_{4}\right)=3$. Between every two vertices, there is only one path. This means that there is only one direction you can take. This is not the same as the graph before this one, where there were multiple paths to take.

February 3rd, 2021
Recall from the last lecture that:

$$
\sum_{i=1}^{n} \operatorname{deg}\left(v_{i}\right)=2 \times|E|
$$

Question: Can we construct a graph with the following degrees? 5, 6, 4, 4, 5, 3, 2
Solution: No, we have 3 vertices that have odd degrees $(5,5,3)$. From the previous lecture, we know that we cannot have an odd number of vertices with odd degrees. In other words, we need to have an even number of vertices with odd degrees.

Question: Can we construct a graph with the following degrees? $4,4,6,2,2,4,2,2$
Solution: We have an algorithm that we can use with any graph to see that if we can construct it. We can use it for any question of the above type. This means that we can use it for the first question as well, even though we knew that we cannot construct that graph because of the fact that we had an odd number of vertices with odd degrees. This is the Hakimi-Havel Algorithm:

1. Arrange the degrees in descending order. In this example, it would be: $6,4,4,4,2,2,2,2$
2. We select the next 6 degrees after the first one and reduce the degree of each of them by 1 . This would result in the following:

$$
6,3,3,3,1,1,1,2
$$

3. If we can figure it out here, then we stop. If not, we remove the vertix with highest degree, and repeat the process (arrange in descending order). First, we take the next 3 degrees (after removing the first), and so on.

$$
\begin{gathered}
3,3,3,2,1,1,1 \\
2,2,1,1,1,1 \\
1,1,1,1,0 \\
1,1,0,0
\end{gathered}
$$

Clearly, at this stage, we can see that we can construct a graph with degrees $1,1,0,0$. It would look like the following:

Therefore, we can conclude that since we have created a valid graph of the reduced form, we can create a graph with vertices of degree $6,3,3,3,1,1,1,2$. This is the idea behind our algorithm. This algorithm works for simple, undirected graphs.

Where do we stop? When we see a number become negative, then we can quickly see that we have to stop the algorithm. By another logic, we can also stop when we have something like a vertex of degree 1 and every other vertex has degree 0 . In that case, it would be illogical and we obviously have to stop.

Question: Can we construct a graph with the following degrees? 4, 2, 2, 0, 2
Solution: We apply the algorithm to the degrees:

$$
\begin{aligned}
& 4,2,2,2,0 \\
& 1,1,1,-1
\end{aligned}
$$

We immediately stop because we have a vertex with negative degree. Therefore, the answer is no. There is no graph with the mentioned degrees, by the algorithm we have used.

Def.: Connected Graphs: A graph, $G=(V, E)$ is connected iff there is a path between every two vertices. Consider the following example:

Our graph is clearly connected because there is a path between each of the 6 vertices. However, note that this doesn't mean there is an edge between them. Recall that every edge is a path but not every path is an edge. Consider the following two paths:

$$
\begin{gathered}
v_{2}-v_{3}-v_{4}-v_{5}-v_{6} \\
v_{2}-v_{3}-v_{4}-v_{3}-v_{4}-v_{5}-v_{6}
\end{gathered}
$$

The difference between the two (in the example shown above) is that the second one has repeated vertices, while the first does not. This is the difference between a walk and a path.

Path: $v_{1}-v_{2}-\ldots-v_{n}$ is a path. All the vertices are distinct except for v_{1} and v_{n} (They could be the same, which would make it a cycle). This means that we do not go through a vertex more than once in a path.

Walk: There is no restriction in terms of the vertices we visit. Vertices may appear more than once. In other words, a walk is a path in which vertices can appear more than once.

Def.: Cycles: Consider the path $v_{1}-v_{2}-\ldots-v_{n}$. This path is a cycle if we have that $v_{1}=v_{n}$. In other words, the path starts and ends at the same vertix. Note that this means v_{1} is a repeated vertex, although this is not an issue. It is still a path.

Consider the following graph:

In this case, the following path: $v_{1}-v_{2}-v_{3}-v_{1}$ is a cycle. Now consider the sequence:

$$
v_{1}-v_{2}-v_{3}-v_{4}
$$

This is obviously a path. But it is also a walk, because every path is a walk, but not every walk is a path. Now, to demonstrate a walk, consider the sequence shown below:

$$
v_{1}-v_{3}-v_{2}-v_{1}-v_{3}-v_{4}-v_{5}
$$

Since we have repeated vertices, this sequence is clearly a walk and NOT a path. Now, consider the graph given below:

This graph is NOT connected, because we don't have a path between each two vertices. However, you can observe that there are two components, each of which are connected graphs. In other words, this graph actually consists of two connected subgraphs.

Def.: Complete Graphs: A connected graph is called complete iff every two vertices are connected by an edge (Not to be mistaken with a path).

The difference between a complete and connected graph is that the complete graph has an edge between every pair of vertices, while a connected graph does not necessarily have this. Furthermore, every complete graph is connected, but not every connected graph is complete. Observe the following examples.

Connected but not complete

Complete graph with n vertices

Notation: A complete graph with n vertices is denoted by K_{n}. For example, K_{4} is a complete graph with 4 vertices. This is the same as the graph shown on the right.

We know the following fact: In a complete graph, K_{n}, each vertex has degree equal to $n-1$, where $n \geqslant 2$.

February 8th, 2021
Trail: Every trail is a walk, but not every walk is a trail. In a trail, you have to visit every edge once, but we cannot visit the same edge more than once. In walks, we can (obviously) visit edges more than once.

Recall the Hakimi-Havel algorithm: Where we check to see whether a sequence of positive integers form a simple, undirected graph.

Def.: Subgraphs

Consider a graph $G=(V, E)$, and another graph $H=\left(V_{1}, E_{1}\right)$. We say that H is a subgraph of G iff $V_{1} \subseteq V$ and $E_{1} \subseteq E$. Consider the following example:

Consider H to be the part of the graph consisting of v_{1} and v_{2}. Is H a subgraph of G ? Yes, because:

$$
\left\{v_{1}, v_{2}\right\} \subseteq\left\{v_{1}, v_{2}, \ldots, v_{5}\right\} \text { and } E_{1}=\phi \subseteq E
$$

Now, look at the following graph:

Is H a subgraph of the original graph? Let us look at the two conditions.

$$
v_{1}=\left\{v_{1}, v_{3}, v_{4}\right\} \subseteq V, \text { but } E_{1} \nsubseteq E
$$

Therefore, H is NOT a subgraph of G.

Def.: Induced Subgraphs

Consider the graph $G=(V, E)$. We say that $H=\left(V_{1}, E_{1}\right)$ is an induceed subgraph of G if the two conditions hold:

1. H is a subgraph of G
2. $e \in E_{1}$ iff $e \in E$, where e is an edge.

Consider the following example to understand the second condition:

We have that H is a subgraph of G but it is NOT an induced subgraph. Why? If v_{1} and v_{3} are connected in the original graph, then they must be connected in the induced subgraph. Clearly in our example, H is not induced because v_{1} and v_{3} are not connected through an edge.

We have that (by staring) H is a subgraph of G. However, H is NOT an induced subgraph because in G we have an edge between v_{3} and v_{2}. This edge does not exist in H. If we wanted H to be an induced subgraph, we would have to remove v_{2} and the edge $v_{4}-v_{2}$.
One way to think of an induced subgraph is to think of the same graph, with some of the vertices removed. Let us look at another example:

If we remove the edge $v_{4}-v_{2}$, then we would have a subgraph H, but it would not be induced bceause of the fact that we have an edge missing.

Def.: Spanning Subgraph

Consider the graph $G=(V, E)$ and another graph $H=\left(V_{1}, E_{1}\right) . H$ is called a spanning subgraph iff $V_{1}=V$. This means that we have the same vertices, but the edges can be removed. The set of vertices in the subgraph is the same set as the original, but this is not necessarily the case for the set of edges. Look at the same example as the previous:

This is clearly a subgraph, but it is NOT induced. However, it IS a spanning subgraph because we still have all the vertices v_{1}, v_{2}, v_{3} and v_{4}. Spanning subgraphs and general subgraphs are easy, but the only one we need to be careful about is the induced subgraphs.

Recall the definition of a complete graph: A connected graph in which every two vertices are connected by an edge. This means that every pair of vertices are connected by an edge. Notation: K_{n} where n is the number of vertices. For example, K_{4} :

Note that both of these are examples of complete graphs with 4 vertices. We can consider both of them as K_{4}. There is however, more than one way of drawing these graphs.

Recall the definition of a connected graph: There exists a path between any two vertices within the graph. It does not necessarily have to be complete to be connected. We can look at the following graph:

We can see that the graph is connected, but because of the missing diagonals, it is NOT complete.

Fact: Let E be the total edges in K_{n}, with $n \geqslant 2$. Then we have that:

$$
\left|E\left(K_{n}\right)\right|=\frac{n(n-1)}{2}
$$

Why is this the case? The degree of each vertex is $n-1$. So the sum of the degrees is $n(n-1)$. We apply this to the earlier correlation between the number of edges and the number of vertices to get the above formula.

Def.: Complement of a Graph
$G=\overline{(V, E)}$. We say that $\bar{G}=\left(V_{1}, E_{1}\right)$ is the complement of G. Two vertices in \bar{G} are connected by an edge iff they are not connected by an edge in the original graph, G. However,

$$
V_{1}=V \text { but } E_{1}=\text { every edge NOT in } E
$$

Where $V_{1}=V$ and $E_{1}=\varnothing$
This is also a spanning subgraph because all the vertices are present and $\varnothing \subseteq E$. Similarly, if we had the following graph, the complement would be:

Where $V_{1}=V$ and $E_{1}=\left\{v_{1}-v_{2}\right\}$

This is NOT a spanning subgraph because it is not a subgraph at all. The edge $v_{1}-v_{3}$ is not an edge in the original graph, or mathematically: $E_{1} \nsubseteq E$.

Let us take another example:

Fact: Let $G=(V, E)$ be a graph, and let $\bar{G}=(V, \bar{E})$ be the complement of G.

$$
|E|+|\bar{E}|=\frac{n(n-1)}{2}
$$

In other words, the number of edges in the graph and the number of edges in the complement we have the total number of edges for K_{n}. If we combine the edges in G and its complement, we will have a complete graph. That is what this fact is saying.
Clearly we have that $E \cap E_{1}=\varnothing$, and $E \cup E_{1}=$ set of all edges of $K_{n} \Longrightarrow|E|+|\bar{E}|=\frac{n(n-1)}{2}$.
Question: Is there a graph with n vertices st $|\bar{E}|=10$?
Solution: There are a few ways to do this. First of all, we could have a graph with n vertices and no edges. Alternatively, we can follow the following formula:

$$
G=K_{n}-|\bar{E}|
$$

Using this, we would have exactly $|\bar{E}|$ edges in the complement of our graph. Let us look at the two ways with an example: If we want a graph st $|\bar{E}|=10$, choose any n where $\frac{n(n-1)}{10} \geqslant 10$. We can choose 6 for this case. Then:

$$
\begin{array}{r}
G=K_{6}-10 \text { edges } \\
\text { Therefore } \bar{G}=(V, \bar{E}) \text { with }|\bar{E}|=10
\end{array}
$$

The complement of the graph consists of the 10 edges that are missing from K_{6}.

Let us detail one of the solutions proposed for the problem in the previous lecture. We want a graph such that $G=(V, E)$ and $\bar{G}=(V, \bar{E})$, with $|\bar{E}|=10$. Look at the following solution:

Definition of Isomorphism of Graphs: In the street language, let us consider the question. What does it mean when a graph, G_{1}, is isomorphic to another graph, G_{2} ? This may be the fact that we draw them differently but both have the same graph properties. For example, if G_{1} has 3 vertices of degree 1 , then G_{2} has exactly 3 vertices of degree 1 .
In the official language: Consider $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right) . G_{1}$ and G_{2} are graph-isomophic iff \exists a bijective fucntion $f: V_{1} \longrightarrow V_{2}$ st $\forall a, b \in V_{1}$, if $a-b \in E_{1}$, then we have that $f(a)-f(b) \in E_{2}$. Let us look at an example.

Are G_{1} and G_{2} isomorphic? Both have 4 edges, and both have 4 vertices. However, in G_{1}, v_{1} has exactly degree 3 , while G_{2} has no vertices of degree 3 . Therefore, they are not isomorphic to each other. Another reason why they are not graph-isomorphic is that G_{1} has a cycle of length 3 , while G_{2} does not.
Let us look at another graph:

Are G_{1} and G_{2} isomorphic? Let us construct the mapping.

$$
f: V \longrightarrow W \text { where } f\left(v_{1}\right)=w_{1}
$$

We know that both these graphs are representations of K_{4}. The structures of G_{1} and G_{2} are exactly the same. Let us think of another pair of graphs.

These are both graphs of order 6, but are they the same graph? Firstly, they should have the same number of vertices and edges. Both have 9 edges and 6 vertices. Every vertex in both are of degree 3. Since all of them have the same degree, this is one of those special cases where our mapping can be each vertex to the other.

$$
\begin{aligned}
& f: V_{1} \longrightarrow V_{2} \\
& v_{1} \longrightarrow w_{1} \\
& v_{2} \longrightarrow w_{2} \\
& v_{3} \longrightarrow w_{4} \\
& v_{4} \longrightarrow w_{3} \\
& v_{5} \longrightarrow w_{5} \\
& v_{6} \longrightarrow w_{6}
\end{aligned}
$$

We make the mapping also based on whether or not the corresponding vertices have edges in between them as well. For example, v_{2} maps to w_{2} because there exists an edge $v_{2}-v_{6}$, and also an edge in $G_{2}: w_{2}--w_{6}$. Look at the following graph:

Our claim is that this graph is NOT isomorphic to G_{1} and G_{2}. Why is this the case? Because in this graph, we have a cycle of length $3\left(f_{2}-f_{3}-f_{4}\right)$, while we do not have any 3-cycles in G_{1} and G_{2}.

In general, it is very hard to see whether two graphs are isomoprhic to each other. It is often not enough to each whether they have the same number of edges, vertices, degrees, etc... If you can find a way to do it, you don't need to do your PhD anymore. You'll get a Fields Medal.

Def.: K-Regular Graphs: A graph is called K-regular if each vertex has degree equal to K.
Question: Assume G_{1} and G_{2} are of order n, and both are K-regular for some value K. Is G_{1} isomorphic to G_{2} ?

Solution: Not necessarily. It is not always the case, although it is possible. We will look at a counterexample to show this. Consider the graphs shown above. Clearly we know that G_{3} in 3 -regular and so is G_{1} and G_{2}. Furthermore, they have the same number of edges and vertices. However, we saw that they are NOT isomorphic because of the existence of the 3 -cycle in G_{3}. Therefore, by counter-example, we know that this is not always true.

Assume we have a graph, $G(V, E)$ where G is 5 -regular. What can we say about $|V|$? Remember that the sum of the degrees of a graph has to be an even number $(2 \times|V|)$. Therefore, we know that $|V|$ is an even number bigger or equal to 6 .

Fact: Assume $G(V, E)$ is K-regular, where K is an odd integer. Then $|V|$ is an even integer $\geqslant K+1$.

Look at the following 3-regular graphs, used to demonstrate this fact:

The number of vertices on the first graph is 6 , while the number of vertices on the second graph $\left(K_{4}\right)$ is 4 . Both are even numbers $\geqslant 3$, since the graphs are 3-regular.

February 15th, 2021
Question: Imagine we have the following graph $G(V, E)$. Find the adjacency matrix of G.

Solution: The adjecency matrix is simply a matrix in which if there is an edge between two vertices, we put a 1 . If there is no edge, we put a 0 . Moreover, if we are allowing loops in our graph, then we put a 2 instead of a 1 in a loop with the vertex itself.

	v_{2}	v_{5}	v_{4}	v_{3}	v_{1}
v_{2}	0	1	0	1	1
v_{5}	1	0	0	0	0
v_{4}	0	0	0	0	0
v_{3}	1	0	0	0	0
v_{1}	1	0	0	0	0

Why did we arrange it like this and not the natural why? We should. But it would be a different matrix to what we have above. Let us look at it.

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	
v_{1}	0	1	0	0	0
v_{2}	1	0	1	0	1
v_{3}	0	1	0	0	0
v_{4}	0	0	0	0	0
v_{5}	0	1	0	0	0

But why did we do it like that the first time? How many different adjacency matrices do we have? There are finitely many adjacency matrices for the same graph, but there are a lot. It simply depends on how we decide to write our vertices. How many different ways are there? 5! different ways.

Theorem: Consider two graphs, G_{1} and G_{2} that are of the same order. $G_{1} \approx G_{2}$ iff they have a common adjacency matrix. This means that out of all the different adjacency matrices that they have, one should be common between the two of them. G_{1} and G_{2} can have many different adjacency matrices. This is a bit difficult to do, however, since we need to consider all the adjacency matrices of both the graphs.

This is more something that is easier to do with the help of computer programs and algorithms. Let us look at an example of an adjacency matrix for the sake of displaying some of the properties:

	v_{1}	v_{2}	v_{3}	v_{4}
v_{1}	0	1	1	1
v_{2}	1	0	0	1
v_{3}	1	0	0	1
v_{4}	1	1	1	0

If the above is $\operatorname{adj}(G)$, then consider $[\operatorname{adj}(G)]^{T}$. Clearly we can see that:

$$
\operatorname{adj}(G)=[\operatorname{adj}(G)]^{T}
$$

There is no playing around here. We cannot perform row / column operations on the adj. matrices in order to get something that is common between two graphs. We need to go through each one and compare.

Unsolved Problem: Consider 2 graphs, $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$, both of the same order. Then we say that $G_{1} \approx G_{2}$ iff:

$$
\forall 1 \leqslant i \leqslant n \longrightarrow\left(G_{1}-v_{i}\right) \approx\left(G_{2}-v_{i}\right)
$$

We have to try this for all i between 1 and n. This is actually a conjecture that has not yet been proved using our current knowledge of mathematics, but we also cannot find a counter-example to disprove it.

Def.: Bipartite Graphs

A graph $G(V, E)$ is called a bipartite graph iff $V=A \cup B$, where $A \cap B=\varnothing$, every two vertices in A are NOT adjacent (not connected by an edge), and every two vertices in B are not connected by an edge (not adjacent). Consider the following graph:

$$
\begin{aligned}
& A=\left\{v_{1}, v_{2}, v_{3}\right\} \\
& B=\left\{v_{4}, v_{5}, v_{6}\right\}
\end{aligned}
$$

Clearly we can see that this graph is bipartite. Why is this true? Because there is no intersection between the two sets of A and B, and each pair of vertices in A has no edge with each other (resp. in $B)$.

Consider the following graph:

Is this graph bipartite? Yes. You can select $A=\left\{v_{1}, v_{2}\right\}$ and let $B=\left\{v_{3}\right\}$. Then clearly we can see that this fits the conditions for a bipartite graph. Now, how about the following graph?

If you spend the rest of your life and the next, you cannot show that this graph is bipartite. However, look at the following graph:

Although we would not originally be able to see, upon redrawing the graph (maintaining the same properties), we can see that $A=\left\{v_{1}, v_{3}, v_{5}\right\}$ and $B=\left\{v_{2}, v_{4}\right\}$. This graph is clearly bipartite. Are the two graphs isomoprhic? Of course, they are the same graph. This means that they have a common adj. matrix.
What is the difference between the graphs G and H ? First of all, there is one more vertex and also one more edge in G.
However, the big observation here is that in H, we have a cycle in $v_{1}-v_{2}-v_{3}-v_{1}$, which is a cycle of length 3 , while we have a cycle in G with $v_{1}-v_{2}-v_{3}-v_{4}$. This is a cycle of length 4. We will now see the theorem.

Theorem: A graph $G(V, E)$ is bipartite iff it has no odd cycles. This means that if our graph has even a single odd cycle, then we definitely cannot say that it is bipartite.
Look at the following graph:

Is this graph bipartite? No. The reason for this is that we have a cycle:

$$
v_{1}-v_{2}-v_{3}--v_{4}-v_{7}-v_{1}
$$

This is a cycle of length 5 , which is odd. Therefore we know that we don't have a bipartite graph by the theorem just introduced. We don't need to waste our time splitting the vertices into two sets. This is where we stop.

February 17th, 2021
Fact: A graph is bipartite iff it has no odd cycles.

This graph is of order 5 . This means that there are 5 vertices. There is a set A, containing the three vertices on the top, and a set B, consisting of the 2 vertices on the bottom. This graph is bipartite with the notation: $B_{3,2}$. This means that the set A contains 3 vertices, and the other set contains 2 vertices.

Let us draw $B_{5,3}$. This is a graph of order 8 (8 vertices).

Clearly there are many different ways of drawing $B_{5,3}$. In other words, there are many different graphs that can be made to be $B_{5,3}$.

Def.: A bipartite graph is called a complete bipartite graph iff every vertex in A is connected to every vertex in B. Consider the following graph:

Now, look at the this graph:

This is a graph representing $B_{4,3}$. This is also a complete graph of the form $K_{4,3}$.

Reminder: When we say that a graph is $K_{n}, n \geqslant 1$, this is a complete graph. On the other hand, when we say $K_{m, n}$, we have a complete bipartite graph. This is not the same as K_{n}. For example, if we consider $K_{5,4}$:

Fact: $K_{m, n}$ has exactly $m \times n$ edges. If we assume $|A|=m$ and $|B|=n$, then each vertex in set A has degree n, and each vertex in set B has degree m.

Proof: We use the trivial result:

$$
\begin{array}{r}
\sum \text { degrees }=\sum_{v \in A} \operatorname{deg}(v)+\sum_{w \in B} \operatorname{deg}(w) \\
=m n+m n=2 m n=2|E| \\
\Longrightarrow|E|=\frac{2 m n}{2}=m n
\end{array}
$$

Def.: Girth: Consider the graph $G(E, V)$. The girth of the graph, denoted as girth (G), is the length of the shortest cycle. Recall that a cycle is a path which the first vertex is the same as the terminating vertex. If a graph has no cycles, then we say that it has girth ∞.
What is $\operatorname{girth}\left(K_{n}\right)$, for $n \geqslant 3$? Since there is an edge between every pair of vertices, we know that the cycle with shortest length is 3 . Thus $\operatorname{girth}\left(K_{n}\right)=3$ for $n \geqslant 3$.

Proof: Since $n \geqslant 3$, then $v_{1}-v_{2}-v_{3}-v_{1}$ is a cycle of length 3 in K_{n}.

What is the girth of $K_{m, n}$, where $m=1$ or $n=1 ? \operatorname{girth}\left(K_{m, n}\right)=\infty$, since there are no cycles in the graph. On the other hand, if we have $K_{m, n}$ with $m, n \geqslant 2$, then $\operatorname{girth}\left(K_{m, n}\right)=4$. This is always the case. Why is this true?

Consider the cycle $v_{1}-v_{4}-v_{2}-v_{5}-v_{1}$. This is a cycle of length 4 . The girth of $K_{m, n}$ will never be 3 , or 5 , or $7 \ldots$ This is because the graph would not be bipartite otherwise.

Proof:

$$
\begin{array}{r}
A: v_{1}, v_{2}, v_{3}, \ldots, v_{m} \text { with } m \geqslant 2 \\
B: w_{1}, w_{2}, w_{3}, \ldots, w_{n} \text { with } n \geqslant 2 \\
\text { Since the graph is } K_{m, n}, \text { then: } \\
v_{1}-w_{1}-v_{2}-w_{2}-v_{1} \text { is a cycle. }
\end{array}
$$

Look at the graph below:

The complement of the graph, $\overline{K_{2,3}}$:

Can we calculate the number of edges in the complement of $K_{m, n}$? Is there a formula? Recall that the graph $K_{m, n}$ has order $m+n$. Also recall that:

$$
\left|E\left(K_{m, n}\right)\right|+\left|\bar{E}\left(K_{m, n}\right)\right|=\frac{(n+m)(n+m-1)}{2}
$$

Finally, remember that the number of edges in a complete graph, K_{w}, is: $\frac{w(w-1)}{2}$. This is linked to the above formula. We will use this information to derive the number of edges in the complement of the complete bipartite graph:

$$
\begin{array}{r}
m n+\left|\bar{E}_{K_{m, n}}\right|=\frac{(n+m)(n+m-1)}{2} \\
\left|\bar{E}_{K_{m, n}}\right|=\frac{(n+m)(n+m-1)}{2}-m n \\
=\frac{n^{2}+2 m n+m^{2}-n-m-2 m n}{2} \\
=\frac{n^{2}+m^{2}-(n+m)}{2}
\end{array}
$$

Will the complement of $K_{m, n}$ be connected? No. There will be no edges connecting the two sets, A and B. This is because a complete bipartite graph has edges between the two sets only.

Def.: Self Complement Graph: A graph whose complement is itself. We can demonstrate a self complementing graph in the example below. Another way of saying this is that the graph G is isomorphic to its complement, \bar{G}.

Are these two graphs (where the right graph is the complement of the left) isomorphic? Consider the mapping:

$$
\begin{gathered}
f: G \longrightarrow \bar{G} \\
v_{1} \longrightarrow w_{3} \\
v_{2} \longrightarrow w_{4} \\
v_{3} \longrightarrow w_{2} \\
v_{4} \longrightarrow v_{1}
\end{gathered}
$$

This graph is a self-complement. How about we have a graph with 3 vertices? Can we have a selfcomplement graph with 3 vertices? No. This is never the case. In fact, if we have a graph that is a self-complement, it always has to have 4 or more vertices.
Let G be a graph of order n st the graph is isomorphic to its complement. In mathematical terms, we have that $G \approx \bar{G}$. We know that $|E|+|\bar{E}|=\frac{n(n-1)}{2}$.

$$
\begin{array}{r}
\text { Since } G \approx \bar{G},|E|=|\bar{E}|=m \\
\Longrightarrow m+m=\frac{n(n-1)}{2}=2 m \\
4 m=n(n-1) \\
n(n-1) \text { must be a multiple of } 4 \\
\text { ie } 4 \mid n \text { or } 4 \mid(n-1) \\
\Longrightarrow n=4 K \text { for some } K \geqslant 1 \in \mathbb{Z} \\
\text { or } n=4 K+1
\end{array}
$$

For example, if we have a graph of order 7, then we cannot have that it is isomorphic to its complement. This is because $7 \neq 4 K$ or $4 K+1$. However, we can order with a graph of order 5 , because $5=4(1)+1$. Therefore, a graph of order 5 can be isomoprhic to its complement, ie selfcomplement graph.

February 20th, 2021
Consider the following adjacency matrix:

$$
\operatorname{Adj}(G)=A_{1}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

The graph that would correspond to this adj. matrix would be:

Can this graph be bipartite? No. The cycle $v_{3}-v_{2}-v_{4}-v_{3}$ is a cycle of length 3 (odd). A graph with an odd cycle cannot be bipartite.

Recall that two graphs can be isomorphic even if they don't have the same adj. matrices. They can be rearranged and manipulated through row operations. As long as they have a common adj. matrix, they can be isomorphic.

Def.: Permunation Matrix: A permutation matrix is an $n \times n$ st each row has " 1 " exactly once. All other entries in a row are 0 . For example, consider the following matrix:

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)
$$

This is a permutation matrix that is not necessarily obtained from I_{n}. Therefore we To apply this to the above, consider the following result.

Result: Let A_{1} be an adj. matrix of a graph $G_{1}\left(V_{1}, E\right)$. Consider A_{2}, adj. matrix for G_{2}. The result states that $G_{1} \approx G_{2}$ iff $\exists p$ (permutation matrix) st $p A_{1}=A_{2} p$. If we can find some p st the equation holds, then the two graphs are isomorphic.

Consider:

$$
A_{1}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right) \text {, and } A_{2}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

Definitely we can see that as matrices, $A_{1} \neq A_{2}$. Now consider our matrix p :

$$
p=\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right) \longrightarrow \text { permutation matrix }
$$

We can see that p contains a single " 1 " on each row (obtained from I_{5}). In this question, A_{1} and A_{2} are indeed isomorphic. Can we verify this through $p A_{1}=A_{2} p$? Since p is invertible, we know that:

$$
A_{2}=p A_{1} p^{-1}
$$

Def.: Diameter of a Graph: The diameter of a graph, denoted as $\operatorname{diam}(G)$, is given by the following set:

$$
\operatorname{diam}(G)=\max \{d(a, b) \mid a, b \in V \text { and } a \neq b\}
$$

This means that $\operatorname{dim}(G)$ is the maximum distance between two vertices of a graph. For example, if we are given that $\operatorname{dim}(G)=4$, then we know that $\forall a, b \in V \longrightarrow d(a, b) \leqslant 4$. Note that $d(a, a)=0$. For a graph $K_{m, n}$ (complete bipartite), what is the diameter?

$$
\operatorname{dim}\left(K_{m, n}\right)=2
$$

This is always the case. It is trivial. However, we can see the formal proof below.

Proof:
We have that $A=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and $B=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$. Choose some $v \in A$ and some $w \in B$. Clearly for $K_{m, n}, d(v, w)=1$. Now, to go the other way around, choose $v \in A$ and $w^{\prime} \in B$. Clearly we can see that $v-w^{\prime}-w$ is a path of length 2 for any pair of vertices, v and w.

Similarly, consider K_{n}. We know trivially that $\operatorname{diam}\left(K_{n}\right)=1$. Now consider the graph below:

$$
\operatorname{diam}(G)=3=\max \{d(a, b) \mid a, b \in V\}
$$

Now consider another example, with the graph below:

$$
\operatorname{diam}(G)=2
$$

Given the following graph, we can produce an adj. matrix.

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

Question: For each vertex, find the degree.

$$
\begin{aligned}
\operatorname{deg}(1) & =1 \\
\operatorname{deg}(2) & =3 \\
\operatorname{deg}(3) & =2 \\
\operatorname{deg}(4) & =2
\end{aligned}
$$

We can do this by just looking at the adj. matrix. The sum of the numbers in the row and column for the given vertex should be the same. This is a simple observation.

Look at the following two graphs:

$$
A_{1}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right), \text { and } A_{2}=\left(\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Our claim is that $G_{1} \approx G_{2}$. Show this, and also show p st $p A_{1}=A_{2} p$. Then, using words, show how we can get A_{2} from A_{1}.

$$
\begin{aligned}
f: G_{1} & \longrightarrow G_{2} \\
f(1) & =4 \\
f(2) & =1 \\
f(3) & =3 \\
f(4) & =2
\end{aligned}
$$

This mapping will work st $p A_{1}=A_{2} p$.
In another example, we could take some mapping $K: G_{2} \longrightarrow G_{1}$ where we would have $p A_{2}=A_{1} p$. f and K are the same, but opposites.

Now, let us try to obtain p. Take I_{4}. We will do the following steps:

1. $R_{1} \mapsto R_{4}$

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

2. $R_{2} \mapsto R_{1}$

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

3. $R_{4} \mapsto R_{2}$

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

This is our p. We will use a calculator to see whether or not the equality $p A_{1}=A_{2} p$. It indeed holds.

How did we come up with this? Look at the mapping of f. We can see that $f(1)=4$, so therefore we take $R_{1} \mapsto R_{4}$ from the identity matrix I_{4}. Similarly, we can see that $f(2)=1$, so we interchange the rows R_{1} and R_{2}. We continue in this fashion.
Now, we will get A_{2} from A_{1} by interchanging rows and columns.
Start with A_{1} :

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

1. $R_{1} \mapsto R_{4}$

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

2. $R_{2} \mapsto R_{1}$

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

3. $R_{4} \mapsto R_{2}$

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Note that when we say $R_{4} \mapsto R_{2}$, this means that we replace the current R_{2} with R_{4} from the original matrix, A_{1}.

Let us call this matrix C. Now, let's do the same thing but with columns. In other words, do the same mapping, but on columns. 1st column with 4 th, 1 st with 2 nd, etc.
Start with C

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

1. $C_{1} \mapsto C_{4}$

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

2. $C_{2} \mapsto C_{1}$

$$
\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

3. $C_{4} \mapsto C_{2}$

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

We can see (after the column replacements) that this matrix is the same as A_{2}. For verification:

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)=A_{2}
$$

Def.: Dominating Set: Take a graph $G(V, E)$. A subset B of V is called a dominating set if every vertex in $V-\{B\}$ is connected to at least one vertex in B.

Consider the following graph of $K_{2,3}$:

Our claim is that $B=\{3,4,5\}$ is a dominating set. This is because every vertex in $V-\{B\}$, which is the set $\{1,2\}$, is connected by an edge to at least one of $\{3,4,5\}$. We can also see that $L=\{1,2\}$ is also a dominating set of $K_{2,3}$.

Another example of a dominating set in $K_{2,3}$ is $K=\{2,4\}$. Every vertex in $K_{2,3}$ exlcuding 2 and 4 is connected to one of either 2 or 4 .

Def.: Dominating Number: The dominating number, denoted $\gamma(G)$, is the size of a smallest dominating set.

Let us try to understand this better through the use of an example. Consider the graph $K_{3,7}$. What is the dominating number of this graph?

$$
\gamma\left(K_{3,7}\right)=2
$$

Why is this the case? Take one vertex from each set (similar to the above example with taking $\{2,4\})$. Then we know that the size of this set is 2 .

What is $\gamma\left(K_{1, n}\right)$? Clearly this would be 1 . This is because the 1 vertex at the top of the graph is connected to every vertex (n in total) in the second set.

In fact, the general case is that for $m, n \geqslant 2$, then $\gamma\left(K_{m, n}\right)=2$. To demonstrate the idea of the dominating number further, note that $\gamma\left(K_{n}\right)=1$ for $n \geqslant 2$, since every vertex is connected to every other vertex in a complete graph.

Consider the following graph:

We can see that $\gamma(G)=1$. This is because we can choose a dominating set, $B=\{2\}$, and every other vertex is connected to 2 . Therefore trivially we can see that $\gamma(G)=1$.
Another graph:

What is $\gamma(G)$? Consider the set of vertices $\{2,5,9,13\}$. These are all nodes in the tree that fall in between the root and the leaves. Within this set, we can see that every other vertex is connected through an edge to one of these 4 . Therefore, since $|\{2,5,9,13\}|=4$, we have that $\gamma(G)=4$.

February 24th, 2021
Def.: Size: Given a graph $G(V, E)$, we know that the order n means that $|V|=n$. On the other hand, if we say that a graph G has size m, this means that the number of edges is m. In other words, a graph with order n and size $m \Longrightarrow|V|=n$ and $|E|=m$.

Def.: Tree: We call a connected graph a tree iff G has no cycles.

Fact: A connected graph is a tree iff between every two distinct vertices, there is a unique path. There is only one way to go from one vertex to another. There is no other way.
Sketch Proof:

We can see that if we want to go from a to b in our two graphs, there is only one way to go in the first one but more than one way in the second one. Why is this interesting? Clearly we know that a tree contains no cycles. If the path between two vertices in a graph is not unique, we automatically know that we can create a cycle. Therefore, \Longleftrightarrow.
\Longrightarrow Assume G is a tree. Let $a, b \in V$
We shall show that \exists ! path from a to b
Deny:
Assume p_{1}, p_{2} are 2 diff paths from a to b
It is clear that the graph will have a cycle

(contradiction)

Assume \exists ! p between a, b. Show G is a tree
Deny:
Since G is connected and not a tree,
\exists some cycle $v_{1}-v_{2}-\ldots-v_{n}$
which is a path from v_{1} to v_{n}
But $v_{1}-v_{n}$ is also a path from v_{1} to v_{n}
Therefore we have more than one path
(contraction)

Consider the graph $K_{1,5}$. This is clearly a tree, because there is no cycle within the graph. Is every tree a $K_{1, n}$ for some n ? No. This is not the case. This would only work if our tree has 1 level. Look at the following graph (tree):

We say that the tree is $B_{n, m}$ for some n, m, where it is a bipartite graph. What is our set A and what is our set B ? Since this graph has no cycles, then it definitely cannot have any odd cycles, which by definition makes it a bipartite graph.

$$
\begin{aligned}
A & :=\{1,4,5\} \\
B & :=\{2,3\}
\end{aligned}
$$

This makes our graph (tree) $B_{3,2}$. Now, is every $B_{m, n}$ a tree? No. We can easily produce bipartite graphs that contain cycles, which renders trees out of the possibilities.

1. We know that $K_{1, n}$ is a tree, but not every tree is $K_{1, n}$;
2. Wc also know that every tree is $B_{m, n}$, but not every graph of the form $B_{m, n}$ is a tree.

Def.: End-Vertex: A vertex v in a graph is called an end-vertex $\operatorname{iff} \operatorname{deg}(v)=1$. It is clear that every tree has at least 1 end-vertex.
$\boldsymbol{F a} \boldsymbol{c t}$: A connected graph of order n is a tree iff it is of size $n-1$. This means that the number of edges in the graph is $n-1$.

Proof:

$$
\begin{array}{r}
\Longrightarrow \\
\text { Assume } G \text { is a tree, we show that }|E|=n-1 \\
\text { If } n=2, \text { then it is clear. }
\end{array}
$$

$$
\text { Assume the result is true for some } n=k, k \geqslant 2
$$

We prove it for $n=k+1$
Assume G is a graph of order $k+1$
We show that $|E|=k$
Since G is a tree, G has an end vertex, say v
Now $G-\{v\}$ is some tree order k
By assumption, for $G-\{v\},|E|=k-1$

$$
\Longrightarrow|E|=k \text { for } G
$$

Construct an argument, etc...

Question: Can we have a tree of order 8 and size 6 ? No. This is because the size has to be $n-1$, which is 7 in our case.

Fact: Every connected graph G has a spanning subgraph that is a tree. This is called a spanning
 iff $V=V_{1}$. This means that the set of vertices is the same (not that $V_{1} \subseteq V$).
Also recall that H is an induced subgraph of G iff $V_{1} \subseteq V$ and $a-b$ is an edge of H iff $a-b$ is an edge of G.

We can see that H is a subgraph of G, clearly, but it is not an induced subgraph. Why? Because we have an edge between 2 and 4 in the original graph, but there is no edge between 2 and 4 in H.

March 1st, 2021

This is a connected graph. We say that a connected graph consists of a single component. In other words, the graph above is 1-component. Now look at the following graph:

This graph is not connected, because there is no path between the vertices $\{1,2,3\}$ and $\{4,5,6,7\}$. Each one of the individual sets are, however, connected. Note that $\{1,2,3\}$ is an induced subgraph of G and so is the set $\{4,5,6,7\}$. We can say that G has 2 components.
We say that D is a component of a graph G if D is a connected induced subgraph of G and D is not a subgraph of a connected subgraph of G.

Is H a component of the original graph, G ? Note that H consists of $1-2-3-1$, and is definitely an induced subgraph of G. However, it is not a component, since H is a subgraph of a larger subgraph of G. Therefore, it cannot be a component. G in our case has 2 components.

Def.: Eccentricity: Assume that our graph $G(V, E)$ is connected. Choose some $v \in V$. The eccentricity of v is denoted and defined by the following:

$$
e(v)=\max \{d(v, u) \mid u \in V\}
$$

$$
\begin{gathered}
e(1)=\max \{d(1,2), d(1,3), d(1,4), d(1,5)\} \\
=\max \{1,1,2,3\}=3 \\
\text { Therefore we have that } e(1)=3
\end{gathered}
$$

$$
e(2)=3, e(3)=2, e(4)=2, e(5)=3
$$

What can we connect eccentricity to? The diameter of a graph.

$$
\operatorname{diam}(G)=\max \{e(v) \mid v \in V\}
$$

We define the radius as the minimum eccentricity of all the vertices in a graph. Mathematically, we say that:

$$
\operatorname{rad}(G)=\min \{e(v) \mid v \in V\}
$$

In the example of the graph provided above, we have that the set of $\{e(v) \mid v \in V\}=\{3,3,2,2,3\}$. We take the minimum of this to obtain: $\operatorname{rad}(G)=2$.

The natural follow up question would be: If a graph is not connected, how would be calculate the eccentricity?

$$
e(i)=\infty \quad \forall 1 \leqslant i \leqslant 7
$$

This is because you cannot get from (for example) vertex 1 to vertex 7 .

Def.: Path Graph: Consider the graph $v_{1}-v_{2}-\ldots-v_{n}$ where v_{1}, \ldots, v_{n} are all distinct vertices. Such a graph is called a path-graph of order n, denoted P_{n}. This graph is clearly also a tree since it does not contain any cycles.
Question: Let $n \geqslant 2$. What is the size of P_{n} ?
Solution: Since we know that a path-graph is a tree (of order n), then clearly, from previous result, we know that the size of P_{n} is $n-1$.
Another approach to the proof:

$$
\begin{array}{r}
v_{1}-v_{2}-v_{3}-\ldots-v_{n} \\
\operatorname{deg}\left(v_{1}\right)=1=\operatorname{deg}\left(v_{n}\right) \\
\operatorname{deg}\left(v_{i}\right)=2 \quad \forall 1<i<n \\
\sum \operatorname{degrees}=2|E| \\
2(n-2)+2=2|E| \\
2 n-4+2=2|E| \\
2 n-2=2|E| \\
|E|=n-1
\end{array}
$$

Is P_{n} a bipartite graph? Consider $P_{5}=1-2-3-4-5$. Then we can split the vertices into two sets:

What is the dominating number of P_{5}, denoted $\gamma\left(P_{5}\right)$? The smallest dominating set is $\{2,4\}$, and thus $\gamma\left(P_{5}\right)=2$.

Def.: Cycled Graph: Assume we have a graph $1-2-3-\ldots-n-1$. This is a cycle, for $n \geqslant 3$. A graph in this form is called a cycled graph, denoted by C_{n}. This means we have a cycled graph of order n. For example, $C_{5}: 1-2-3-4-5-1 . C_{n}$ cannot be a tree (because it is literally a cycle).

Is C_{5} a bipartite graph? No, because it contains an odd cycle. What about C_{6} ? Yes. This leads us to the result: C_{6} is a bipartite graph iff n is even.

$$
C_{6}=1-2-3-4-5-6-1
$$

What is $\gamma\left(C_{6}\right)$? 2. Choose $\{1,4\}$ or any pair of vertices not in the same subset for the bipartite graph representation. Clearly we can see that every vertex outside of $\{1,4\}$ is connected to either 1 or 4. Generally, dominating number problems are considered hard in Graph Theory. The first thing that you may think in that graph is that $\gamma\left(C_{6}\right)=3$. However, since 6 is connected to 1 , this changes everything.
In general, $\gamma\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$. How do we calculate the dominating number for C_{5} ? There is no formula for this. However, look at the graph for C_{5} :

$$
1-2-3-4-5-1
$$

Take the set $\{2,4\}$. Every vertex outside of this set is connected to either vertex 2 or vertex 4 . Thefore, we know that $\gamma\left(C_{5}\right)=2=\left\lfloor\frac{5}{2}\right\rfloor$.
What about $\gamma\left(C_{7}\right)$?

$$
1-2-3-4--5-6-7-1
$$

Take the set of vertices $\{2,4,6\}$, every vertex is connected to one of these three. Therefore, $\gamma\left(C_{7}\right)=3$.
For even n, this idea of the floor of $\frac{n}{2}$ would not work. Consider C_{8} :

A dominating set for this graph: $\{1,4,7\}$. Every vertex outside of $\{1,4,7\}$ is connected to one of the three vertices. Can we make a smaller dominating set? No. Do we have a formula for finding $\gamma\left(C_{n}\right)$, where n is even and $n \geqslant 4$?

$$
\text { for } n \geqslant 4, \text { even, } \gamma\left(C_{n}\right)=\frac{n}{2}-1
$$

March 3rd, 2021
Recall the concept of a dominating set: Assume we have a graph of order n. A set of vertices, $D=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, where $m<n$ st every vertex of the graph, G, outside of D is connected by an edge to at least one vertex in D.

Furthermore, the dominating number is the size of the smallest dominating set. This is all explained in street language for ease of understanding.

Consider the graph, P_{9} :

$$
1-2-3-4-5-6-7-8-9
$$

What is $\gamma\left(P_{9}\right)$? It is the smallest dominating set of the graph. Consider the following set:

$$
\{2,5,8\}
$$

This set is the smallest dominating set of the graph P_{9}. We can see that everything outside of the set is connected to at least one of these three vertices. Therefore, since the size of this set is 3 , then $\gamma\left(P_{9}\right)=3$.
Now look at the graph for P_{15} :

$$
1-2-3-4-5-6-7-8-9-10-11-12-13-14-15
$$

The smallest dominating set for this graph is: $\{2,5,8,11,14\}$. This means that $\gamma\left(P_{15}\right)$. We can form the general case formula for P_{n} :

$$
\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil
$$

What do we expect the value for $\gamma\left(P_{7}\right)$? We take $\left\lceil\frac{7}{3}\right\rceil=3$. Another question: Find $\gamma\left(P_{11}\right)$ and construct the smallest dominating set of it:

$$
\begin{gathered}
\gamma\left(P_{11}\right)=\left[\frac{11}{3}\right\rceil=4 \text { and }\{2,5,8,11\} \\
1-\mathbf{2}-3-4-\mathbf{5}-6-7-\mathbf{8}-9-10-\mathbf{1 1}
\end{gathered}
$$

Application: Imagine we have a computer station, we want to hire hackers. What is the minimum number of hackers we need to be able to hack all of the computers in the work-station? Where do we place them in order to connect to everyone else? This is a very good way of explaining how the concept of the dominating number and dominating set works. We can use any other example of this line of thought.

Consider the graph C_{n}. Would the dominating set be the same as P_{n}, or would it be different? Look at the graph for C_{4} :

What is going to be $\gamma\left(C_{5}\right)$? It will be 2 , because if we look at $1-2-3-4-5-1$, we can see that by selecting the set $\{2,5\}$, everything outside the set of vertices will be connected by an edge to either 2 or 5 . The general formula:

$$
\gamma\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil
$$

Def.: Strongly Dominating Set: The set is a dominating set, and every vertex within the set should be connected to at least one other vertex in the set through an edge. This is more complicated and is a rather new area of research.

Consider the following graph:

What is $\gamma(G)$? Clearly, we don't need a formula for this example. We can see that every vertex in the graph is connected to either 7 or 1 , meaning that we select the set: $\{1,7\}$ as our dominating set. Therefore, $\gamma(G)=2$. Another example:

What is the smallest dominating set of this graph? Choose $\{1,5,7\}$. Done. We can consider more examples:

In this case, we can choose $\{1,4,10\}$. Can we find a dominating set with the vertex 7 ? We can see that the vertex 7 has the highest degree, but we cannot find a minimum dominating set with it. This goes to show that the vertex with highest order is not necessarily the vertex that would produce a minimum dominating set. A dominating set with $7:\{1,7,5,9\}$.
One last example:

We know that $\gamma(G)=2$. Choose any of the following dominating sets: $\{1,6\},\{3,4\},\{2,5\}, \ldots$

Result: Every connected graph has a spanning tree.
Let us sketch the idea before we move on to the actual proof: We can start with a cycle.

If we have a cycle and we remove an edge, what kind of graph will we have? We will have a P_{n} graph. In a cycle, $C_{n}-e=P_{n}$. The graph will, however, stay connected. We will have the same number of vertices but the cycle will become a path. This is what makes it a spanning tree. Recall that spanning means that we have the same vertices, and tree means that we have no cycles. That is clearly visible through our sketch.

We can see that by removing e_{1} and e_{2} from the graph on the left, we have removed all possible cycles from the graph, but we are clearly keeping the same vertices. Therefore, we have constructeed a spanning tree. Thus: $G-\left\{e_{1}, e_{2}\right\}$ is a spanning subgraph, which is a tree.

Is that the only spanning tree, or can we find others? Remove the edges e_{2} and e_{3}.

We can see that the two removals produce graphs that are not isomorphic to each other. In the example just shown, we can see that we have vertices of degree 3 , but none of those is the former.

Def.: Cut-Vertex: For a graph, $G(V, E)$, consider the vertex $v \in V$. We say that v is a cut-vertex of G if $G-v$ is disconnected. This means that when we remove a vertex, in our case v, from the graph, then we also remove all the edges that are connected to v.

Look at the following example:

If we remove the vertex 1 , the graph is still connected. Therefore, 1 is NOT a cut-vertex of G. In fact, there is no vertex in G that is a cut-vertex. The graph will remain connected regardless of which vertex you remove.

Let us go back to the concept of cut-vertices. Consider a graph $G(V, E) \longrightarrow$ connected, order n, size m. Take a vertex, $v \in V$ st $\operatorname{deg}(v)=1$. Will it be possible that $G-v$ is disconnected? No. Why is this the case? Let us visualize.

The vertex v is not connected to anything other than w, since $\operatorname{deg}(v)=1$. If we remove the vertex, then we only remove the edge $w-v$. Therefore, no matter what happens on "the other side" of w, the graph cannot be disconnected (worst-case: w and v are the only vertices of G, removing v automatically leaves us with a single vertex w, which is connected).

By removing v, we have the graph $G-v$, which is connected and of order $n-1$ and of size $m-1$.

Fact: If v is a cut-vertex of a graph $G(V, E)$, then $\operatorname{deg}(v) \geqslant 2$. Note that this does NOT mean every vertex of degree 2 is a cut-vertex. Recall the square from last lecture: each vertex is of degree 2 , but none of them are cut-vertices. Let us look at another graph:

Is the vertex 2 a cut-vertex? No. If we remove it, the graph is still connected. What can we observe about vertex 2? Look at the graph of P_{4} :

$$
1-2--3-4
$$

If we remove the vertex 3 , then it will be disconnected. Therefore 3 is a cut-vertex, and $\operatorname{deg}(3)=2$. The vertex 2 is also a cut-vertex, by the same principle. This will lead us to the following result:

Result: Let $G(V, E)$ be a connected graph. $v \in V$ is a cut-vertex iff $\exists w, z \in V$ st every path from w to z passes through the vertex v.

Consider the example graph shown below:

Is 2 a cut-vertex? You can observe that every path from 3 to 1 , from 4 to 1 and from 5 to 1 passes through 2. We only need to find ONE pair of vertices (note that the result says THERE EXISTS, not for every). Therefore, 2 is a cut-vertex. Another way of looking at it: Can we find a path from 3 to 1 without passing through vertex 2 ? No. Therefore 2 is a cut-vertex.

One more example:

Is 2 a cut-vertex now? No. Because we can find a path from 3 to 1 that does not pass through 2 . In fact, the method to proving that it is not a cut-vertex is to remove vertex 2 and show that we can still traverse between any pair of vertices. i.e. $G-2$ is connected, and hence 2 is not a cut-vertex.
$\underline{\text { Sketch }} \Longrightarrow$ Assume v is a cut-vertex. Show that $\exists w, z \in V$ st every path from w to z passes through v.

Proof: Since v is a cut-vertex, $G-v$ is disconnected. This means that there exists at least some w and $z \in V$ which are not connected through a path, by the definition of a disconnected graph. Therefore, every path from w to z must pass through v.
\Longleftarrow Assume $\exists w, z \in V$ st every path from w to z passes through v. Show that v is a cut-vertex. This is trivial.

Def.: Bridge: An edge, e, is called a bridge iff $G-e$ is disconnected.
Rmk:

- If the graph is of order n and size m, and if v is a cut-vertex, then $G-v$ is of order $n-1$ and size $m-\operatorname{deg}(v)$
- If e is a bridge, then $G-e$ is of order n and size $m-1$. We can see this through the following example:

We can see that the graph on the right is the same as the one on the left, except we have removed the edge $5-4$. We can see that $G-\{3-4\}$ is of order 5 and of size 4 . Our claim is that the only bridge here is $1-2$. Why is this the case? Because that is the only edge we can remove that would result in the graph being disconnected.
Let us look at the following graph:

What can we say about the two graphs? If we remove an edge from the one on the left, then it is a bridge. On the right, however, that is not the case. The graph stays connected regardless of what you remove.

Fact: Let $G(V, E)$ is a connected graph. An edge e is a brige iff we cannot form a cycle in G where e is an edge within such cycle.
$\boldsymbol{S u b} \boldsymbol{F} \boldsymbol{F a c t}$: We know that C_{n} has no bridges, because it is a cycled graph itself. This is trivial. On the other hand, for P_{n}, every edge is a bridge.
Sketch: Assume that e is a bridge. Show that every cycle of the graph, G (if such cycle exists), does not contain e has an edge.
\Longleftarrow Assume C is a cycle of G st e is an edge of C. Hence $G-e$ is connected since $C-e$ stays connected. A contradiction. Thus our denial is invalid. We conclude that every cycle of G does not have e as an edge.

The converse: Assume G does not have a cycle C, where e is an edge of C. Show that $G-e$ is disconnected (i.e. e is a bridge). We know that since e is an edge of C, then if we remove it, it is no longer a cycle. Therefore e is the only path between some two vertices and thus it is a bridge.

March 10th, 2021

1. If we have a graph, $G(V, E) \mathrm{m}$ with $v \in V$, then v is a cut-vertex iff $\exists w, z \in V$ st every path from w to z must pass through v.
2. Consider $e \in E$. Then e is a bridge (cut-edge) iff e is not an edge of any cycle of G.

Consider the two sets, A and B. Then we have that the Cartesian product is defined by:

$$
A \times B=\{(a, b) \mid a \in A \text { and } b \in B\}
$$

Now, what would this look like with graphs?

Def.: Cartesian Product between two Graphs: Imagine you have two graphs, $G_{1}\left(V_{1}, E_{1}\right), G_{2}\left(V_{2}, E_{2}\right)$. The notation: $G_{1} \square G_{2}$ defines the Cartesian product of G_{1} with G_{2}, where:

$$
V=\left\{(a, b) \mid a \in V_{1}, b \in V_{2}\right\}
$$

Two distinct vertices of V, say $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$, are adjacent (connected by an edge) iff $a_{1}=a_{2}$ and $b_{1}-b_{2} \in E_{2}$ OR $a_{1}-a_{2} \in E_{1}$ and $b_{1}=b_{2}$.
Let us look at an example to be able to show this:

We say that the vertices of $G_{1} \square G_{2}$ is $V_{1} \times V_{2}=V$, defined by the following pairs of vertices:

$$
V=\{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\} \text { and }|V|=\left|V_{1}\right| \times\left|V_{2}\right|
$$

Let us look at them in another way.

$$
\begin{array}{ll}
(1,4) & (1,5) \\
(2,4) & (2,5) \\
(3,4) & (3,5)
\end{array}
$$

Is $(1,4)$ connected to $(1,5)$? Yes, beacuse $a_{1}=a_{2}$ and $5-4$ is an edge in G_{2}. We continue in this fashion.

Another way of drawing this:

The graph above shows all the possible edges between the vertices of $G_{1} \square G_{2}$.
Is this graph a tree? No, bceause there are cycles. Is the graph bipartite? No, because we can have a cycle: $(1,5)-(2,5)-(3,5)-(1,5)$, which is of odd degree. Therefore, it is not bipartite.

Since every edge is in a cycle, then we do not have any bridges within the graph. Are there any cut-vertices? No, because the graph remains connected regardless of any single removal of a vertex. We can choose any two vertices and find more than one path between them.

Def.: Take two graphs, $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$. Then we say that $G_{1} \square G_{2}$ is an undirected, simple graph with vertex set $V=V_{1} \times V_{2}=\left\{(a, b) \mid a \in V_{1}\right.$ and $\left.b \in V_{2}\right\}$ st. two vertices $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)$ are connected by an edge iff:

1. $a_{1}=a_{2}$ and $b_{1}-b_{2} \in E_{2}$, or:
2. $a_{1}-a_{2} \in E_{1}$ and $b_{1}=b_{2}$

We know that $|V|=\left|V_{1}\right| \times\left|V_{2}\right|$, and that if G_{1} is of order n, with G_{2} being of order m, then $G_{1} \square G_{2}$ is of order $m n$.

How do we visualize the Cartesian Product, $G_{1} \square G_{2}$? Let us see if we can draw $P_{3} \times C_{3}$.
Solution: We know how to draw C_{3} and P_{3}, they will be drawn below:

The steps are as follows. We will draw them to be able to visualize it at each step.

Since 5 is connected to 6 in C_{3}, then we must have that $(1,5)$ is connected to $(2,5)$. And similarly, $(2,5)$ is connected to $(3,5)$. Furthermore, we know that $(1,6)$ is connected to $(2,6)$, which in turn is connected to $(3,6)$.

Now let us look at the following two graphs:

How would we draw the graph for $G_{1} \square G_{2}$? At each vertex in the first graph, we put a copy of G_{2}. It will look as such:

Another example:

How to visualize $G_{1} \square G_{2}$:

1. At each vertex of G_{1}, draw a copy of G_{2}
2. if $u, v \in V_{1}$ and $u-v \in E_{1}$, then connect the corresponding vertices with an edge.

Let us try to re-visualize $P_{3} \times C_{3}$, with an easier graph to see:

Question:

What will the graph of $G_{1} \square G_{2}$ look like?

What can we observe from the graph above? If one of either G_{1} or G_{2} are disconnected, then the Cartesian Product is also disconnected.

Hypercube (n-cube):

$$
Q_{1}=K_{2} \text { and } Q_{2}=K_{2} \times K_{2}
$$

We will take them to be in the binary base. By this, we mean that K_{2} and $K_{2} \times K_{2}$ are drawn as such:

Continuing in this fashion, we take $Q_{n}=Q_{n-1} \times K_{2}$. Thus we know that:

$$
Q_{3}=Q_{2} \times K_{2}=K_{2} \times K_{2} \times K_{2}
$$

There is an easy way to draw Q_{n}. We already know that:

1. $Q_{n}=Q_{n-1} \times K_{2}$
2. We have that $|V|=2^{n}$ for the graph Q_{n}. Each vertex is an n-string of 0 s and 1 s .
3. Two vertices in Q_{n} are connected by an edge iff they differ in one and only one bit.
4. If $v \in V$, then $\operatorname{deg}(v)=n$. This implies that Q_{n} is always n-regular.

Let us take the vertex 010 for example. We know that 010 is conneted to 110,000 , and 011 . These are the three bit differences in 010 . We also know that these vertices belong in Q_{3}.
5. $|E|=n 2^{n-1}$. What is the proof of this?

$$
\begin{array}{r}
\sum \operatorname{deg}\left(v_{i}\right)=2|E| \\
|V|=2^{n}, \text { each of degree } n \\
\sum \operatorname{deg}\left(v_{i}\right)=n 2^{n}=2|E| \\
|E|=n 2^{n-1}
\end{array}
$$

6. $\operatorname{girth}\left(Q_{n}\right)=4$ for all $n \geqslant 2$. There is no cycle of length 3 in the graph.

$$
000-100-110-010-000
$$

7. We can sketch Q_{n} is a bipartite graph. Why? Because it contains no odd cycles.

March 17th, 2021
Recall the concept of the hypercube, which is $Q_{n}=Q_{n-1} \square K_{2}$. What is the diameter of Q_{n} ?
Question: Consider Q_{4}. Find the distance $d(0101,0010)$.

Solution:

$$
0101-0001-0000-0010
$$

By changing only one bit at a time, we can see that there exists a path of length 3 . This is the shortest possible path between the two vertices. Therefore, $d(0101,0010)=3$. Can we find a path of length 2 ? No. This is because the vertices differ in 3 bits. Essentially, we can see that the length of shortest path is the same as the Hamming distance.
Now, what is $\operatorname{diam}\left(Q_{n}\right)$? It is n. Why? $d(000 \ldots 00,111 \ldots 11)=n$. The maximum number of bit changes is if we have to change every single one, which in a Q_{n} graph is equal to n.
In general, $d(v, w)=$ no. of differences in bits. There are many examples of this. It is trivial.

There is another way of constructing Q_{n}.

The idea is to replicate the previous layer and add a 0,1 to the front. This is much nicer and easier than constructing through the hypercube. Now, let us see Q_{4} :

Def.: Independent set of vertices: Given a graph $G(V, E)$, the subset $I \subset V$ is called an independent set of vertices iff every two vertices in I are not adjacent (every two vertices in I are not connected by an edge).

Maximum Independent Set: The maximum number of vertices in a graph that are non-adjacent. Let us see the graph below to visualize this:

What is a maximum independent set of C_{4} ? Considet the set of vertices $\{1,4\}$ or $\{2,3\}$. They are not adjacent to one another. Is $\{1,4,3\}$ an independent set? No. This is because $3-4$ is an edge. Now, let us see another graph:

What is a maximum independent set of our graph, G ? We know that G is of order 7. There is more than one maximum independent set. However, they all share the same number of vertices.

$$
\{1,3,5,7\}
$$

In this question, this is the only maximum independent set. However, for example, $\{2,4\}$ is also an independent set, just not the maximum.
This is a maximum independent set. If a graph is complete bipartite, then we have $K_{m, n}$. Trivially, the maximum independent set is the bigger one of m, n.
Let I be a maximum independent of vertices. $\alpha(G)=|I|$. In words, this is the size of the maximum independent set. If we say that $\alpha(I)=4$, then every maximum independent set must have 4 elements (Similar fashion to dominating numbers \& dominating sets).
We know that $\gamma(G)=2$. Take the dominating set $\{2,4\}$. Is there another dominating set? Take $\{4,6\}$.

Def.: Vertex-Cover: Take a graph, $G(V, E)$ A subset $C \subset V$ is called a vertex cover of the graph iff every edge of the graph has a a terminal or initial vertex in C.
Look at the graph:
G

What is the vertex-cover of G ? It cannot be $\{2\}$, because $1-3$ is an edge and therefore 1 is not a terminal vertex. The vertex-cover of G is $\{1\}$.
Another example:

View vertex-cover: If $a-b$ is an edge of G, then either $a \in C$ or $b \in C$. Thus we can see that $\{1,4\}$ is a vertex-cover, but $\{1,2\}$ is not. Why? Because the edge $\{3,4\}$ does not terminate at either 1 or 2 . However, $\{1,4\}$ is a vertex-cover because every edge in C_{4} terminates at either 1 or 4. $\{2,3\}$ is another example

What is a minimum dominating set of C_{4} ? We can take $\{1,4\}$ or $\{2,3\}$. Is there a connection between the vertex-cover and the minimum dominating set?

March 22nd, 2021
Recall the independent set: A subset of vertices, I, where every two vertices in I are not connected through an edge.
Independence number: $\alpha(G)=|M|$, where M is a maximum independent set of vertices.
Vertex-cover (C) : A subset of vertices st. whenever $a-b \in E$, then either $a \in C$ or $b \in C$.
Vertex-cover number: $\beta(G)=|C|$ where C is a minimum vertex-cover of G.

Result: For a graph $G(V, E)$, let C be a subset of V. Then C is a vertex-cover of G iff $V-C$ is an independent set. This means that the set of vertices not including the vertices in the vertexcover are all non-adjacent.
Proof:

> Assume C is a vertex-cover of G Show that $V-C$ is an independent set. Let $a, b \in V-C$. Show $a-b \notin E$. Deny: $a-b \in E$ Hence either $a \in C$ or $b \in C$. Contradiction, since $a, b \in V-C$. Hence $a-b \notin E$. Thus $V-C$ is an independent set.

Assume $V-C$ is an independent set.
Show that C is a vertex-cover.
Assume $a-b \in E$ for some $a, b \in V$
Show $a \in C$ or $b \in C$
Since $a-b \in E$, and $V-C$ indep., we conclude that:

$$
a \text { or } b \notin V-C
$$

Why? Because if both $a, b \in V-C$,
we cannot have the edge $a-b$

$$
\begin{array}{r}
a \notin V-C \Longrightarrow a \in C \\
b \notin V-C \Longrightarrow b \in C
\end{array}
$$

Result: Assume C is a vertex-cover. Then: $|C|+|V-C|=|V|$. This is trivial, and clear from the previous argument.

Result: Let $G(V, E)$ be a graph of order n. Then we have that $\alpha(G)+\beta(G)=n$.

Proof:

$$
\text { We know that }|V-C|+|C|=|V|=n
$$

This is true for any vertex-cover C.
Assume C is a minimum vertex-cover.
Then $V-C$ is a maximum independent set.

$$
\begin{array}{r}
\Longrightarrow|V-C|=\alpha(G),|C|=\beta(G) \\
|V-C|+|C|=\alpha(G)+\beta(G)=n
\end{array}
$$

Consider the following graph as an example:

Give a minimum vertex-cover of G. Consider $\{1,2,4\}$. This is a minimum vertex-cover. Most likely, if you take the vertex with the highest degree, it works well as the vertex-cover.

$$
V-C=\{3,5\}
$$

This is a maximum independent set of G.
Another example:

This is a bipartite graph (not complete bipartite). What is a minimum vertex-cover of the graph? Another way of denoting this graph is $B_{4,3}$.

$$
C=\{5,6,7\}, \text { and thus }|\beta|=3
$$

This means that the maximum independent set of G is:

$$
V-C=\{1,2,3,4\}, \text { and thus } \alpha(G)=4
$$

Let us look at another $B_{4,3}$, with diffferent edges:

We can see that the minimum vertex-cover of the graph is $\{6\}$, because all edges in the graph terminate at v_{6}. Thus the maximum independent set is $V-C=\{1,2,3,4,5,7\}$. Then $\beta(G)=1$ and $\alpha(G)=6$.

Result: Assume $B_{m, n}$ is connected. Then $\beta\left(B_{m, n}\right)=\min \{m, n\}$ and $\alpha\left(B_{m, n}\right)=\max \{m, n\}$. This is trivial since the graph is connected, and thus each vertex from the upper set is connected to some vertex in the lower set.

Consider the graph:

This graph is not connected. However, we can see that $C=\{1,2,3\}$ and $M-C=\{4,5,6,7,8\}$ is the maximum independent set. Thus $\alpha(G)=5$ and $\beta(G)=3$. This goes to show that the graph does not necessarily have to be connected for the result to hold.

Note: The domination set need not be the vertex-cover. Last lecture, we saw the example of C_{4}, where the dominating set was the same as the vertex-cover:

However, we will show that this is not always the case. Take P_{4} :

$$
1-2--3-4
$$

We know that $\{1,4\}$ is a minimum dominating set, but $\{1,4\}$ is not a vertex-cover. Why? Because $2--3$ is an edge that does not terminate at 1 or 4 . The minimum vertex-cover is $\{2,3\}$, which is another dominating set. Can we prove that every vertex-cover is a dominating set? Yes, but the converse is not true

March 24th, 2021
Fact: Let $G(V, E)$ be a connected graph and C be a set of vertices. If C is a minimum vertexcover, then C is a dominating set. However, it need not be a minimum dominating set.

Proof:
Let C be a vertex-cover of G
We will show that C is a dominating set.
Let $a \in V-C$. We show $\exists b \in C$ st. $a-b \in E$
Since C is a vertex-cover, and $a-b \in E$,
$b \in C$

Thus C is a dominating set.

Fact: Assume your graph $G(V, E)$ is connected of order n. Then $\alpha(G)+\gamma(G)=n$
Proof:
Let C be a minimum vertex-cover of G
Then $\beta(G)=c_{1}=\gamma(G)($ By previous result $)$
Let M bea maximum independent set
Hence $\alpha(G)=|M|$
From last lecture, $\alpha(G)+\beta(G)=n$

$$
\Longrightarrow \alpha(G)+\gamma(G)=n
$$

If we find the maximum independent set of G, we can automatically find the vertex-cover and a dominating set.
Question: $G(V, E)$ is connected and of order n. Say M is a maximum independent set st. $|M|=m$, with $m<n$. Find a minimum dominating set and find $\gamma(G)$.

Solution: $C=V-M$, which is the minimum vertex-cover. But since the graph is connected, C is a minimum dominating set. We know that $\alpha(G)+\gamma(G)=n$, and thus $\gamma(G)=n-m$.

End of Content for Exam I

Def.: Matching Subgraphs: Consider the graph $G(V, E)$. A subgraph $H\left(V_{1}, E_{1}\right)$ of G is called matching iff for every $w \in V_{1}, \operatorname{deg}(w)=1$. This is the degree of w in H. To make it more clear, we can say that:

$$
\operatorname{deg}_{H}(w)=1
$$

Look at the following example:

$$
H=\{1-2,3-4\}
$$

It is clear that H is a subgraph of G, but it is not an induced subgraph (The edges $1-3$ and $2-4$ are not present in $H)$. However, H is a spanning subgraph of G, because $V_{1}=V$ and $E_{1} \subset E$.
Now, note the following: $\operatorname{deg}_{H}(1)=1, \operatorname{deg}_{H}(2)=1, \operatorname{deg}_{H}(3)=1, \operatorname{deg}_{H}(4)=1$. Since every vertex of H is of degree 1 , then we conclude that H is a matching subgraph of G.
Equivalent Definition of Matching Subgraphs: A subgraph $H\left(V_{1}, E_{1}\right)$ is a matching subgraph of $G(V, E)$ iff every edge in E_{1} has no common vertex with every other edge in E_{1}.
Common language: If $a-b$ and $c-d \in E_{1}$, then a, b, c, d are all distinct vertices.
One more way of saying it: $H\left(V_{1}, E_{1}\right)$ is a matching subgraph of G if every two edges in E_{1} have no common vertex. Now, let us look at some examples.

We claim that this graph, G, has a matching subset of size 3 (meaning that the set of edges of the subgraph has 3 elements).

Consider the graph: $H=\{2-3,4-5,7-8\}$. This is a matching subgraph of G. If we draw it, it would simply look like this:

What are we interested in by looking at this? Look at this example of a graph:

A maximum matching subgraph of this would be: $H=\{1-2,3-5\}$. Another one would be $F=\{2-3,4-5\}$.

Def.: Matching Number: Let H be a matching of maximum size, say m. Then the matching number is equal to m.

Look at the following graph:

The maximum matching of this would be $H=\{1--2,3-5,4-6\}$. It is clear to see that by selecting the wrong edges, we can easily be mistaken. Notice that $\{1-2,3-4\}$ is a matching subgraph, but it is not the maximum. Can we make a matching of size 4 ? No. It is impossible since we do not have 4 distinct pairs of vertices.

$$
\text { April 5th, } 2021
$$

Recall the definition of a matching set: Take $G(V, E)$, with $M \in E . M$ is called a matching subgraph if whenever $a-b, c-d \in E$, then a, b, c, d are distinct vertices. Another way of saying this is: Every two edges in E have no common vertex.

$$
m(G)=|M|, \text { where } M \text { is maximum matching }
$$

Example:
1)

In this case, $M=\{1-3\}$, or $M=\{2-3\}$, or $M=\{1-2\}$. Therefore, we know that $m\left(K_{3}\right)=1$, which is the cardinality of the maximum matching set.
What if we take a square instead?
2)

Note that this graph is not K_{4}. Do not forget this. Now, let us see the possible maximum matching sets: $M=\{1-2,3-4\}$ or $M=\{1-3,2-4\}$. In both cases, we can lead to the conclusion that:

$$
m(G)=2=|M|
$$

3)

$$
M=\{1-7,2-5,3-6,4-8,10-9\}, m(G)=5
$$

Look at the following example of a bipartite graph that will lead to a result about the matching number:

We know that $M=\{1--5,3-6\}$, and thus $m\left(B_{4,3}\right)=2$.
Result: Assume your graph G is $B_{m, n}$ st. $|A|=m$ and $|B|=n$. Assume $m>n$. Let h be the number of vertices in A that are connected by an edge to some vertices in B, and let k be the number of vertices in B that are connected to some vertices in A. Then $m(G)=\min \{h, k\}$.

This is $B_{4,2}$, where $B=\{5,6\}$. We can take another example:

This is $B_{5,4}$. Note that $k=2$, and $h=4$. Thus we know that $m\left(B_{5,4}\right)=\min \{4,2\}=2$. We can use this information to construct the minimum matching set:

$$
M=\{3-6,4-9\} \text { or } M=\{3-7,8-4\}
$$

If a graph has no odd cycles, then we know $m(G)$, because we can draw the graph as a bipartite. The problem arises when the graph has odd cycles. Let us demonstrate:

This graph contains an odd cycle ($1-2-3-1$), which is of length 3 . Therefore we cannot make a bipartite graph out of this. Thus we have to manually check to see what the maximum matching set is. We can come up with $M=\{1-3,5-4\}$ or $M=\{3-5,2-4\}$. These sets are of cardinality 2 , which means that $m(G)=2$.

Def.: Perfect Matching: Let M be a matching set of a graph $G(V, E)$, say $M=\left\{a_{1}-b_{1}, a_{2}\right.$ $\left.b_{2}, \ldots,\right\}$. Let us take the set $V_{1}=\{a, b \mid a-b \in M\}$. If $V_{1}=V$, then we say that M is a perfect matching set. In other words, if we take the vertices of all the edges in the match, then the set of vertices should be the same as the set of vertices in the original graph G. We are essentially using all the vertices in the graph.

$$
M=\{1-2,3-4\}
$$

This is a perfect matching set, because it uses all 4 of the vertices that are in the graph G. Another example:

This is a graph representing C_{5}. We claim that this graph has no perfect matching sets. We can find a matching set for this graph: $M=\{1-2,4-5\}$ or $M=\{1-2,3-4\}$. These are maximum matching. However, they do not include all the vertices, and thus there is no perfect matching set.

Consider P_{6} :

$$
1-2-3-4-5-6
$$

What is a maximum matching set for P_{6} ? Is there a perfect match for it?

$$
M=\{1-2,3-4,5-6\}
$$

We can see that this matching set includes all the vertices in P_{6}, and thus M is a perfect matching set for P_{6}. On that note, $m(G)=3$.

Note that evert perfect matching set is a maximum matching set, but it is not true the other way around. In other words, not every maximum matching set is a perfect matching set.

Result: A graph C_{n} or P_{n} has perfect matching set iff n is even. Furthermore, $m\left(C_{n}\right.$ or $\left.P_{n}\right)=\frac{n}{2}$. We will take the example of C_{10} to demonstrate this result:

$$
M=\{1-2,3-4,5-6,7-8,9-10\}, \text { and } m\left(C_{10}\right)=5=\frac{10}{2}
$$

Proof: It is trivial.

We know from this result that $m\left(C_{n}\right.$ or $\left.P_{n}\right)=\frac{n}{2}$ as long as n is even. But what can we say about $m\left(C_{n}\right.$ or $\left.P_{n}\right)$ if n is odd instead?

$$
m\left(C_{n} \text { or } P_{n}\right)=\frac{(n-1)}{2}=\left\lfloor\frac{n}{2}\right\rfloor, \quad \text { for } n \text { odd }
$$

When we have a tree, we have to redraw it as a bipartite graph, and we apply the earlier result taking the minimum between the two sets' connections to each other.

Result: We say that $K_{m, n}$ has a perfect matching set iff $m=n$.
Proof:

$$
\text { We have that } m\left(K_{m, n}\right)=\min \{m, n\}
$$

This is because every perfect matching set is a maximum, and by the first result, we know we have to include all the vertices for it to be maximum, and this implies that $m=n$. Otherwise, there is no way to choose the perfect matching set.

April 7th, 2021
Def.: Edge-Cover: Consider a graph $G(V, E)$. A subset of G, denoted $E_{C} \subset E$ is called an edgecover of G iff $\forall a \in V, \exists$ some edge $a-b \in E_{C}$, for some $b \in V$.

Exp:

What is a maximum matching for this graph? $\{2-5,3-7\}$. In other words,

$$
M=\{2-5,3-7\}
$$

However, this graph has no edge-cover, because this graph is not connected, and has vertices of degree 0 . Let us look at another example:

Exp:

We can see that this graph is also not connected. However, this graph does NOT have isolated vertices (vertices of degree 0). We will proceed: $M=\{1-5,2-6,3-7\}$. But what would be the edge-cover?

$$
E=\{1-5,2-6,3-7,4-7\}
$$

This is the minimum edge-cover, because we cannot come up with a smaller set.

$$
\beta_{e}(G)=\left|E_{C}\right| \text { st. } E_{C} \text { is minimum }
$$

We know that $m(G)=3, \beta_{e}(G)=4 \Longrightarrow|V|=7$.

Exp: Consider the graph of C_{4} :

$$
\begin{array}{r}
M=\{1--2,3-4\}, m\left(C_{4}\right)=2 \\
E_{C}=\{1-2,3-4\} \\
m\left(C_{4}\right)+\beta_{e}\left(C_{4}\right)=|V|=4
\end{array}
$$

Result: Consider $G(V, E)$, graph with no isolated vertices (no vertices of degree 0). Then we can say that:

$$
m(G)+\beta_{e}(G)=n=|V|
$$

where n is the order of G.

Proof:

Assume M is a maximum matching set. Asssume that $\beta_{e}(G) \leqslant m(G)$.
This proof was left incomplete and will be revisited in a later lecture.

Def.: Incident: Given a graph $G(V, E)$, where $e \in G$ st. $e=a--b$ for some $a, b \in V$. Then we say that e is incident at a and e is incident at b. When we have that e is incident at a vertex a, then e could be one of two things: $e=a-b$, or $e=b-a$.

This can lead to another definition of the degree of a vertex: The number of edges that are incident at the vertex, say a.

Question: Assume we have a labeled graph $G(V, E)$, where labeled means that all edges and vertices have labels.

The incidence matrix:

	e_{1}					
e_{2}						e_{3}

The sum of the numbers in each row is the degree of the vertex, and the sum of the numbers in each column is always 2 , because each edge connects only 2 vertices.

Line Graphs: Let us demonstrate what a line graph is through an example. Consider the following graph G, which we will use to construct $L(G)$.

We swap out the vertices with the edges, which are labeled in G.
$e_{m}, e_{n} \in V(L(G))$ are connected by an edge in $L(G)$ iff they have a common vertex in G. This means that they are incident at the same vertex in G.

We can see that $L(G) \approx G$, and in fact the example shown is K_{3}. In other words, $L\left(K_{3}\right) \approx K_{3}$. We can see another graph:

Assume that we have $L\left(G_{1}\right) \approx L\left(G_{2}\right)$. Does this necessarily mean that $G_{1} \approx G_{2}$? No. This is not the case. We can see that in the examples we just provided. We showed in the examples that $L\left(K_{3}\right)=K_{3}$, but also that $L\left(K_{1,3}\right) \approx K_{3}$. Howwever, we know that $K_{3} \not \approx K_{1,3}$.

Exp:

We can see that $L\left(P_{4}\right) \not \not \approx P_{4}$, because in fact $L\left(P_{4}\right)=K_{1,2}$.
We can also observe that if we have a graph G of size m and order n, then the line graph $L(G)$ will be of order m.

April 12th, 2021
Consider the following graph:

$$
V_{L}=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}
$$

We can draw $L(G)$ as such:

The order of $L(G)$ is equal to the size of G.

Result: Assume that G is of order n and size m. Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the set of vertices of the original graph. Assume $d_{1}, d_{2}, \ldots, d_{n}$ are degrees of the vertices of V respectively, ie. d_{1} is the degree of vertex v_{1}, \ldots

Then we can say that $\operatorname{size}(L(G))=\frac{d_{1}^{2}+d_{2}^{2}+d_{3}^{2}+\cdots+d_{n}^{2}-2 m}{2}$
$\underline{\text { Sketch: }}$ The idea is to choose a vertex v_{i}, with $\operatorname{deg}\left(v_{i}\right)=d_{i}$, where we have $1 \leqslant i \leqslant n . d_{i}$'s edges are connected to v_{i}.

The number of edges in $L(G)$ that connect the d_{i} 's edges, or d_{i} 's vertices in $L(G)$. The number of edges in $L(G)=d_{1} C 2+d_{2} C 2+\cdots+d_{n} C 2$, where C is the combinational choice. Thus we will have the following:

$$
\begin{array}{r}
\frac{d_{1}\left(d_{1}-1\right)}{2}+\frac{d_{2}\left(d_{2}-1\right)}{2}+\cdots+\frac{d_{n}\left(1-d_{n}\right)}{2} \\
=\frac{d_{1}^{2}-d_{1}+d_{2}^{2}-d_{2}+\cdots+d_{n}^{2}-d_{n}}{2} \\
=\frac{d_{1}^{2}+d_{2}^{2}+\cdots+d_{n}^{2}-\left(d_{1}+d_{2}+\cdots+d_{n}\right)}{2} \\
\quad\left(d_{1}+d_{2}+\cdots+d_{n}\right)=2 m=2|E|
\end{array}
$$

Question: Assume the degrees of the vertices of a graph of order 5 are: 3,2,1,1,1. Find the order and the size of $L(G)$.
Solution: The order of $L(G)=\frac{\sum \text { degrees of } G}{2}$. Thus we will have order $(L(G))=4$. To find the size, we will use the formula:

$$
\frac{9+4+1+1+1-2(4)}{2}=4
$$

Result: Let w be a vertex in $L(G)$, in other words w is an edge of the graph G. Then $\operatorname{deg}(w)$ would be: $\operatorname{deg}(a)+\operatorname{deg}(b)-2$, where $w=a-b$, an edge of G st. $a, b \in V_{G}$.

Assume h is adjacent to w in the line graph $L(G)$. Then h and w have either a as a common vertex or b are a common vertex. Thus:

$$
\begin{array}{r}
\operatorname{deg}(w)=[\operatorname{deg}(a)-1]+[\operatorname{deg}(b)-1] \\
=\operatorname{deg}(a)+\operatorname{deg}(b)-2
\end{array}
$$

Def.: Eulerian Graph: F_{m} ("Fake cycle") has m edges of order $n \leqslant m$, but vertices are allowed to be repeated, but the edges are not. Formal definition: A graph of order n and size m is called Eulerian iff it is connected and F_{m} is a subgraph of G. In common language:

$$
a-a_{1}-a_{2}-\ldots-a
$$

This cycle contains all distinct edges of the original graph, but $a_{1}, a_{2}, \ldots a_{n}$ need not be distinct. In other words, in the cycle, we can visit each edge exactly once, but vertices can be visited more than once.

Exp:

This graph is not Eulerian, because we cannot have any cycle that would contain all the edges and is visited only once. Remember that a cycle means that we have to start and finish at the same vertex.

We can see another example:

We claim that G is Eulerian. Then we can construct F_{9} :

$$
2-1-3-4-5-6-7-5-3-2
$$

The edges are all distinct, but we can see that we visited some vertices more than once, such as 3 and 5.

Note that a fake cycle is the same as a circuit. Fake cycle is the Dr. Ayman Badawi term for it.

Result: A connected graph $G(V, E)$ is Eulerian iff $\operatorname{deg}(v)$ is an even integer for evert $v \in V$.

Def.: Semi-Eulerian: A connected graph $G(V, E)$ is called semi-Eulerian if there is a fake path, or a trail: $a-b_{1}-b_{2}-\ldots-b_{k}-b$ with $a \neq b$. The vertices need not be distinct, but it has all edges of G.

April 14th, 2021
Recall Def.: Eulerian Graph: A graph is called Eulerian if it is connected and it has some F_{m}, circuit, that contains all edges distinctly in G.

Result: A connected graph is Eulerian iff the degree of every vertex is an even integer.
Sketch: First we prove that a graph G st. the degree of each vertex is $\geqslant 2$, contains a cycle.
mini-Sketch: Assume G is of order n, and we have that $v_{1}-v_{2}-v_{3}$. If we have that $v_{3}-v_{1}$ is an edge, then we automatically have a cycle. Therefore, we assume that $v_{3}-v_{1}$ is not an edge. We can continue with $v_{1}-v_{2}-v_{3}-v_{4}$. If $v_{4}-v_{1}$, then we have a cycle, and so on and so forth. This process must terminate because the graph is of order $n<\infty$. Hence at some point we must have $v_{k}-v_{i}$ an an edge for some $1 \leqslant i \leqslant k-2$.

Now to prove the Eulerian result:
\Longrightarrow Assume the graph is Eulerian. We show that the degree of each vertex is an even integer $\geqslant 2$. G has order n and size m. It should have a circuit or a fake cycle F_{m}, denoted as:

$$
F_{m}: v_{1}-v_{2}-v_{3}-\ldots-v_{k}-v_{1}
$$

This cycle has exactly m distinct edges. Note that not all vertices need to be distinct, but once again, all edges are. Everytime we visit a vertex v_{i} in F_{m}, there will be two edges connected to it. Since the edges of F_{m} are distinct, we conclude that $\operatorname{deg}\left(v_{i}\right)=2 K$ for some $K \geqslant 1$.
\Longleftarrow Assume each vertex of G is an even integer $\geqslant 2$. We will show that G is Eulerian. Since the degree of each vertex is $\geqslant 2$, we have already proved that the graph G must have a cycle C. If C cotains all edges in G, then we are done. Assume C does not contain all edges of G. We prove the converse by induction. Assume every connected graph with even degree-vertices and of order $<m$ is Eulerian.
We first remove all edges from C. Consider the following graph:

Take C to be: $1-3-10-7-1$. We can see that all edges have even degree. If we remove these edges, the order of the graph will remain to be n, but the new graph will look as such:

When we remove the edges in the cycle, then we will have a disconnected graph. Let H_{1}, H_{2}, \ldots, H_{k} be the components of G. In this example, we have 4 components in total, but the order is the same. The degree of each vertex of every component is either 0 or an even integer. This is because if we remove the edges in the cycle, we reduce the degree by 2 . Also, note that each component must have at least one vertex of C.
H_{1} must contain a vertex of C, say v_{1}. Size of $H_{1}<m$, and the degree of each vertex of H_{1} is even and it is definitely connected by the definition of the components. $\Rightarrow H_{1}$ has a circuit (In our example, it is $1-2-5-4-1$.
H_{2} must contain a vertex of the cycle C. In our case, it is 3 . We can go from 1 to 3 , and from 3 we can go to the next component, H_{4} with the vertex 10 , and so on.
The idea is to remove the edges of a cycle, because the number of edges of each component will be less then m. Each component will also have an even degree. We then keep track of the vertices of the components to form a new cycle. Each component will be Eulerian.

Recall Def.: Semi-Eulerian: A connected graph $G(V, E)$ is called semi-Eulerian if there is a fake path, or a trail: $a-b_{1}-b_{2}-\ldots-b_{k}-b$ with $a \neq b$. The vertices need not be distinct, but it has all edges of G. The initial vertex and the terminal vertex cannot be the same.

Result: A connected graph is semi-Eulerian iff exactly 2 vertices in the graph are of one degree.
Proof: Assume your graph is semi-Eulerian. We will show that G has exactly 2 vertices of odd degree. We can take our fake path (trail):

$$
v_{1}-v_{2}-v_{i}-\ldots-v_{1} \neq v_{k}
$$

and it contains all edges of G. This means that the degree of every vertex in the trail is even except v_{1} and v_{k}. If v_{1} is a repeated vertex, then it will have even degree, which is a contradiction. The degree of v_{1} and v_{k} have to both be odd.

Is an Eulerian graph also semi-Eulerian? No. It will never be the case.

Def.: Hamiltonian Graph: A connected graph of order n and size m is Hamiltonian iff C_{n} is a subgraph of G
Def.: Hamiltonian Path: A connected graph G of order n and size m is called a Hamiltonian path iff P_{n} is a subgraph of G.
Exp:

Is this graph Eulerian? No. It is not. Is the graph semi-Eulerian? Yes, because there are exactly two vertices that are of odd degree (2 and 3).

We can construct a trail:

$$
2-5-4-3-1-2-3
$$

This graph is Hamiltonian, because $C_{5}: 1-2-5-4-2-1$ is in the graph. It is also a Hamiltonian path because it contains $P_{5}: 1-2-5-4-3$. In fact, we can conclude that every graph that is Hamiltonian also contains a Hamiltonian path.

April 19th, 2021
Recall Def.: Hamiltonian and Hamiltonian Path: A connected graph $G(V, E)$ of order n is Hamiltonian iff C_{n} is a subgraph of $G . G(V, E)$ is a Hamiltonian path iff P_{n} is a subgraph. Clearly a Hamiltonian graph is a Hamiltonian path, but the converse is not true.

Result: Assume that $G(V, E)$ is connected and of order n. Assume that $\operatorname{deg}(x)+\operatorname{deg}(y) \geqslant n$ for every non-adjacent pair of vertices, x and y. The conclusion is that G is a Hamiltonian graph.

Exp: Construct a Hamiltonian graph of order 7. We will look at the trivial case: C_{7}. Now, look at the following graph:

This graph is definitely not Eulerian nor is it semi-Eulerian. However, is this graph Hamiltonian? In other words, can we find C_{8} as a subgraph of this graph? Consider the following:

$$
1-2-5-8-7-6-3-4-1
$$

Therefore, since C_{8} is a subgraph of G, then it is a Hamiltonian graph.

Def.: Petersen Graph: Connected of order 10 and of size 15, and has the following shape:

It is clear that the Petersen graph is 3 -regular. Therefore it is definitely not Eulerian. However, is it Hamiltonian? No, it is not. However, it is a Hamiltonian path. We consider the following:

$$
1-2-3-4-5-9-6-8-10-7
$$

This is P_{10}, and therefore we conclude that it is a Hamiltonian path. It is interesting to note, however, that if we remove one vertex from this graph, then it will always be Hamiltonian. In other words, $G-\{v\}$ is Hamiltonian for any vertex $v \in V_{G}$.

Consider the following graph:

This is a graph of order 10 and size 15 . However, this graph $G_{1} \not \approx$ Petersen graph. This graph is, unlike the Petersen graph, Hamiltonian. We can construct:

$$
C_{10}: 1-2--3-4-5-9-8-7-6-10-1
$$

Def.: Chromatic Number: The minimum number of colors needed to color the vertices of a graph st. every two adjacent vertices have different colors. It is denoted as $\chi(G)$

Def.: Chromatic Index: The minimum number of colors needed to color the edges of a graph st. every two incident edges (every pair of edges that share a vertex) have different colors. It is denoted as $\chi^{\prime}(G)$

Exp: Consider the graphs for K_{n}.

We can see that for every n, the graph of K_{n} would result in $\chi\left(K_{n}\right)=n$ and $\chi^{\prime}\left(K_{n}\right)=n$. However, what is the chromatic number of a complete bipartite graph?

$$
\chi\left(K_{n, m}\right)=2
$$

Why is this the case?

Since each set A, B contains vertices that are non-adjacent, then we only need two colors. The same can be applied for $\chi\left(B_{n, m}\right)$ iff not all vertices are isolated. It follows the same principle, as the sets contain vertices that are non-adjacent. Completion is not a requirement.

Now, let us consider the graph of $K_{3,4}$:

What is $\chi^{\prime}\left(K_{3,4}\right)$? Our claim is that it is going to be 4. All of the degrees of the above set are 4, and therefore the maximum number of incident edges is going to be 4 . We can draw it as such to see:

We can see that we have 4 distinct colors, and we can see the formula:

$$
\chi^{\prime}\left(K_{n, m}\right)=\max \{n, m\}
$$

What about the cyclic graph? We can see that:

$$
\begin{gathered}
\chi\left(C_{n}\right)=2 \text { for } n \text { even } \\
\chi\left(C_{n}\right)=3 \text { for } n \text { odd }
\end{gathered}
$$

Recall Def.: Chromatic Number: The minimum number of colors needed to color the vertices of a graph st. every two adjacent vertices have different colors. It is denoted as $\chi(G)$

Recall Def.: Chromatic Index: The minimum number of colors needed to color the edges of a graph st. every two incident edges (every pair of edges that share a vertex) have different colors. It is denoted as $\chi^{\prime}(G)$

Also, we recall that $\chi\left(K_{n}\right)=n$ and $\chi^{\prime}\left(K_{n}\right)=n$. We will visualize with the graph for K_{4} :

Now, let us see for K_{5} :

We can see in this case that we had to use 5 distinct colors, so for n odd, we have $\chi^{\prime}\left(K_{n}\right)=n$.

$$
\begin{array}{r}
\chi\left(K_{n}\right)=n \\
\chi^{\prime}\left(K_{n}\right)=n-1 \text { for } n \text { even } \\
\chi^{\prime}\left(K_{n}\right)=n \text { for } n \text { odd }
\end{array}
$$

$$
\begin{array}{r}
\chi\left(K_{n, m}\right)=2 \\
\chi^{\prime}\left(K_{n, m}\right)=\max \{n, m\} \\
\chi\left(P_{n}\right)=2 \\
\chi^{\prime}\left(P_{n}\right)=2
\end{array}
$$

$$
\begin{array}{r}
\chi\left(C_{n}\right)=2 \text { for } n \text { even } \\
\chi\left(C_{n}\right)=3 \text { for } n \text { odd } \\
\chi^{\prime}\left(C_{n}\right)=2 \text { for } n \text { even } \\
\chi^{\prime}\left(C_{n}\right)=3 \text { for } n \text { odd }
\end{array}
$$

Is there a relation between the edge-coloring of a graph and another type of graph? The linegraph! We can see that $\chi^{\prime}(G)=\chi(L(G))$. In other words, the edge-coloring of a graph is equal to the chromatic number of the line graph.

Notation: We say that $\Delta(G)$ is the maximum degree of a vertex. This will lead to our result:
Result: If $G(V, E)$ is bipartite, then $\chi^{\prime}(G)=\Delta(G)$. In other words, the edge-coloring index of a graph is equal to the maximum degree of the vertices in the graph. This is another way of saying that $\chi^{\prime}(G)=\max (m, n)$ for $G=K_{m, n}$.

Brook's Theorem: Let G be a graph st. $G \neq K_{n}$ and $G \neq C_{m}$ for some odd integer m. Then we can say that $\chi(G) \leqslant \Delta(G)$.

If we take K_{4} for example, we know that $\Delta\left(K_{4}\right)=4$, and $\chi\left(K_{4}\right)=\Delta+1$. Furthermore, we can make the following observations:

$$
\begin{array}{r}
\Delta\left(C_{n}, n \text { odd }\right)=2 \\
\chi\left(C_{n}, n \text { odd }\right)=3=\Delta+1
\end{array}
$$

Exp: Consider the following graph:

By the theorem, we know that $\chi(G) \leqslant 3=\Delta(G)$. We can see from the graph on the right that $\chi(G)=3$. Can we find an example of a graph where $\Delta(G) \neq \chi(G)$? Consider $G=K_{10,10}$. Then we know that $\Delta\left(K_{10,10}\right)=10$, but since it is a biparite, then automatically $\chi\left(K_{10,10}\right)=2$.

On the other hand, we can say that the chromatic index is always bigger or equal the maximum degree of the vertices in the graph. Mathematically, we say that $\chi^{\prime}(G) \geqslant \Delta$.

For any graph, we know that the maximum possible chromatic number is $\chi(G)=\Delta+1$. Furthermore, we have that $\chi^{\prime}(G)=\chi(L(G)) \leqslant \Delta+1$. From this, we conclude:

$$
\chi^{\prime}(G)=\Delta \text { on } \Delta+1
$$

Question: When will $\chi^{\prime}(G)$ be $\Delta+1$? iff $L(G)=K_{n}$ or $L(G)=$ odd cycle, and this is by Brook's theorem.

What is $\chi^{\prime}\left(K_{1,3}\right)$? We know that it is 3 . However, consider $L\left(K_{1,3}\right)$:

It is easy to see that $L\left(K_{1,3}\right) \approx K_{3}$. Thus we can connect the results: $\chi^{\prime}\left(K_{1,3}\right)=\chi\left(K_{3}\right)=3$.

Exp: Look at the following graph:

Then we have that $\chi^{\prime}(G)=3$.
We need to construct a graph where the line graph is an odd cycle in order to find a graph st. $\chi^{\prime}(G)=\Delta$. Is it true that $\chi^{\prime}(G)=\Delta+1$ iff $G=K_{n}$ or odd cycle?

April 26th, 2021
Recall that:

$$
\begin{array}{r}
\chi^{\prime}\left(K_{n}\right)=\Delta\left(K_{4}\right)=n-1 \text { for } n \text { even } \\
\chi^{\prime}\left(K_{n}\right)=\Delta+1=n \text { for } n \text { odd }
\end{array}
$$

So far, we have dealt with graphs that are connected for the sake of understanding the chromatic index and number. However, what do we do if the graph is not connected? Then we say that the chromatic index is the maximum of the chromatic index of each component of the graph, and the same applies for the chromatic number.

Recall Result: If a graph G is bipartite, then we have that $\chi^{\prime}(G)=\Delta$.
We can also recall that $\chi^{\prime}\left(C_{n}\right)=\Delta+1=3$ if n is odd. This will lead us into the next result, which is given as such:

Result: Assume G is connected and k-regular of order n, where n is odd. Then we can conclude that $\chi^{\prime}(G)=\Delta+1=k+1$. This result is a special case of the above fact that $\chi^{\prime}\left(C_{n}\right)=3$ for n odd. We can look to the following graph, where we have 9 vertices, 4-regular:

We can see that the graph has chromatic index 5, ie. $\chi^{\prime}(G)=5=\Delta+1$.
This is based off of Brook's theorem:
Recall Brook's Theorem: G is connected, then $\chi(G) \leqslant \Delta$ except for K_{n} and C_{n} for n odd.

Def.: Planar Graphs: A connected graph is called planar if it can be drawn on a piece of paper st. the edges intersect only at the vertices.

Exp:

This is the graph for K_{4}, is it planar? Not drawn like the first, but we can see from the second drawing of it that is planar. It is important to see that the condition for a graph to be planar is that it can be drawn like that.

Def.: Faces of Planar: Consider the same graph for K_{4} :

How many faces does this graph have? We claim that the faces are $4-1-2-4,1-3-4-3$, and finally $3-4-2-3$. These are the three faces of this graph. We think of it as taking scissors and cutting out of the graph without changing anything. Another face is the whole table itself. This is the trivial case. A face cannot be partitioned into smaller faces. Therefore, K_{4} has 4 faces. Let us look at another graph:

By staring, we can see that this graph is planar.

$$
\begin{array}{r}
1-2-5-4-7-6-1 \\
2-3-4-5-2
\end{array}
$$

In total, we have 3 faces for this graph. Another example:

How many faces does this graph have? $3+1=4$. They are trivial to see. The order of this graph is 8 , and it has 10 edges. Notice that $8-10+4=2$. This leads to our result:
Result: Let G be a connected planar of order n and size m. Then $n-m+f=2$, where f is the number of faces.
Sketch: Since the graph is connected and planar, we can start from C_{3} and build the graph from there. We add one vertex each time, which means that n goes up by 1 and so does m, since we cannot just add edges outside of the vertices. This means that the number will never change.

April 28th, 2021
Recall Result: If G is connected, of order n and size m, then $n-m+f=2$. This leads to a second result:
Result: Assume G is a connected planar graph of order n and size m. Then $m \leqslant 3 n-6$. We will also have another result using this result:
Result: Assume G is a connected planar graph of order n and size m. Then $3 f \leqslant 2 m$.
Sketch: If we assume that each face consists of C_{3} (3 edges for each face). Note that the default face has all edges. If we put these two pieces of information together, we will have that $3 f \leqslant 2 m$. Now, we can return to $n-m+f=2$. From the above result, we have that $f \leqslant \frac{2 m}{3}$. Thus:

$$
\begin{array}{r}
n-m+f=2 \\
n-m+\frac{2 m}{3} \geqslant 2 \\
3 n-3 m+2 m \geqslant 6 \\
3 n-m \geqslant 6 \Longrightarrow m \leqslant 3 n-6
\end{array}
$$

Question: Convince me that K_{5} is non-planar. This means that we cannot draw it st. the edges do not cross.

Solution: For $K_{5}, m=10$ and $n=5$. Can we see that $m \leqslant 3 n-6 ? 10 \nless 3(5)-6=9$. Therefore, we know that K_{5} is not planar.

Does this also mean that K_{6} is non-planar? Since K_{5} is a subgraph of K_{6}, and thus it cannot be planar. This leads to this fact:
Fact: K_{n} is planar iff $2 \leqslant n \leqslant 4$.
Note that we can have a connected graph where $m \leqslant 3 n-6$, but this does not necessarily mean that G is planar. This relationship is not iff.

Exp: Consider the graph for $K_{3,3}$

$$
\begin{array}{r}
m \leqslant 3 n-6 \\
9 \leqslant 3(6)-6 \Longrightarrow \text { true }
\end{array}
$$

Assume $K_{3,3}$ is planar. Then $n-m+f=2$. Thus $6-9+f=2 \Longrightarrow f=5$. What is the girth of $K_{3,3}$? The length of the shortest cycle in $K_{3,3}$ is 4 , thus $\operatorname{girth}\left(K_{3,3}\right)=4$. Hence $4 f \leqslant 2 m \Longrightarrow f \leqslant \frac{18}{4}$, but this is never equal to 5 . Therefore we have a contradiction. Despite the fact that $m \leqslant 3 n-6$, we can see that $K_{3,3}$ is non-planar.
 of edges. Note that $k \neq \infty$.
Is $K_{3,2}$ planar? Yes. This means that $n-m+f=2$ and $m \leqslant 3 n-6$. Let us try to draw this graph. First, we find f to make this easier. $f=3$.

We can see that we have 3 faces in total, and that this graph is isomorphic to $K_{3,2}$. We can also see that $K_{n, m}$ where $n \geqslant 3$ and $m \geqslant 3$ is non-planar, and the simple explanation for this is that $K_{3,3}$ is always a subgraph of this.
Recall the Petersen graph:

Properties:

1. This graph is non-planar;
2. It is a Hamiltonian path;
3. It is not Hamiltonian, unless we remove exactly one vertex;
4. The Petersen graph is 3 -regular, of order 10 and size 15 . The chromatic index,

$$
\chi^{\prime}(G)=4=\Delta+1
$$

Why is it non-planar? The $m \leqslant 3 n-6$ holds. However, if the Petersen graph is planar, then $f=7$. we have that $\operatorname{girth}(G)=5$, meaning that $5 f \leqslant 30 \Longrightarrow f \leqslant 6$, which is a contradiction.

Recall the n-cube or Q_{n}. We know that Q_{3} has 8 vertices and 12 edges. We have that Q_{2}, Q_{3} are planar, while Q_{n} for $n \geqslant 4$ are non-planar. We simply have to show that Q_{4} is non-planar, because everything else contains it is a subgraph.

Def.: Subdivision Graph:

We take the original edges and divide them into further "fragments." The graph on the right is a subdivision of the graph on the left. Consider the example of:

Again, we can see that the graph on the right is a subdivision of the graph on the left, because the edges are fragmented into smaller edges that are connecting other vertices.

Big Result: A connected graph G is planar iff one of the following condition holds: G does not have a subgraph that is a subdivision of $K_{3,3}$ or K_{5}.

Recall the big result from last lecture:
Kuratowski's Theorem: Consider $G(V, E)$, a connected graph. Then G is planar iff it does not have a subgraph that is a subdivision of $K_{3,3}$ or K_{5}.

We will use this theorem to convince ourselves that the 4 -cube or Q_{4} is not planar. This means that we will show that Q_{4} must have a subgraph that is a subdivision of $K_{3,3}$ or K_{5}.

We select 6 total vertices in the graph of Q_{4} :

1000	1110	0101
0001	0100	1101

We can see that this is somewhat similar to the graph of $K_{3,3}$, since we have 3 vertices in the top set and 3 in the bottom. Out of these 6 , none are connected to one another. However, can we, for example, find some vertex st. it connects to both 1000 and 0001 ? Yes, it is the vertex 0000.

Now, we know that 1000 and 0100 are not connected through an edge, so we find a vertex that is connected to both of them: 1100 . We proceed in the same fashion to connect the vertices highlighted above:

By doing so, we can see that Q_{4} contains a subdivision of $K_{3,3}$, and thus the graph of Q_{4} is nonplanar.

Exp: Consider the graph of $K_{2,2}$

In this case, is the graph of $K_{2,2}$ with the new vertex w a subdivision of $K_{2,2}$? Yes, does this mean that we can share an edge within a subdivision of a graph? This is the question at hand.

We can also go through another method to show that Q_{4} is not planar. We were previously shown that $m \leqslant 3 n-6 \Longleftrightarrow 3 f \leqslant 2 m$, and this is based on the assumption that the girth of a graph is 3 . This new formula:

Fact: If $\operatorname{girth}(G)=4$, and G is a connected planar, then we have that $m \leqslant 2 n-4$.
Sketch:

$$
\begin{array}{r}
4 f \leqslant 2 m \Longrightarrow f \leqslant \frac{m}{2} \\
n-m+f=2 \Longrightarrow n-m+\frac{m}{2} \geqslant 2 \\
2 n-2 m+m \geqslant 4 \\
\Longrightarrow m \leqslant 2 n-4
\end{array}
$$

Using this fact, we can show that Q_{4} is non-planar. In Q_{4}, we have $n=16$ and $m=32$. Therefore, we come up with the equality:

$$
\begin{array}{r}
\text { (Recall girth } \left.\left(Q_{n}\right)=4 \text { for } n \geqslant 4\right) \\
m \leqslant 2 n-4 \Longrightarrow 32 \leqslant 2(16)-4 \\
32 \leqslant 28: \text { False }
\end{array}
$$

Therefore, this is another way of showing that Q_{4} is non-planar.
What if the girth of our graph is 7 (For a connected planar graph)? Then we proceed as follows:

$$
\begin{array}{r}
7 f \leqslant 2 m \Longrightarrow f \leqslant \frac{2 m}{7} \\
n-m+f=2 \\
7\left[n-m+\frac{2 m}{7} \geqslant 2\right] \\
7 n-7 m+2 m \geqslant 14 \\
\Longrightarrow m \leqslant \frac{7}{5} n-\frac{14}{5}
\end{array}
$$

If we know the girth of a graph, then we can play around and change the relationship between the number of edges and the number of vertices.

Fact: Q_{k} is planar iff $K=2,3$. It is not planar for any other value.

Fact: $K_{n, 2}$ is a planar. Why is this the case? It will never have a subgraph that is a subdivision of $K_{3,3}$ or K_{5}. Therefore, trivially, it cannot be non-planar.

Exp:
G

Show that G is not planar. Since the graph itself is a subdivision of the graph of $K_{3,3}$, then we know by default that it cannot be planar. This is by Kuratowski's theorem, which states that a graph is planar iff it does not contain a subdivision of $K_{3,3}$ or K_{5}.

Exp: Show that the following graph is non-planar:

We can see that the graph has a subgraph that is a subdivision of $K_{3,3}$. Let us construct this subgraph:

By construction, we can see that we have a subdivision of $K_{3,3}$ in the graph, and therefore it is non-planar. Now, let us try the formulas to prove the same:

$$
\begin{array}{r}
m \leqslant 3 n-6 \\
m=\frac{4 \times 9}{2}=18 \\
18 \leqslant 3(9)-6 \Longrightarrow 18 \leqslant 21
\end{array}
$$

Therefore, it satisfies this condition. We can look at another method / formula:

$$
\begin{array}{r}
9-18+f=2 \Longrightarrow f=11 \\
3 f \leqslant 2 m \Longrightarrow 3(11) \leqslant 36 \\
33 \leqslant 36
\end{array}
$$

This condition is also satisfied. This means that regardless of what formula we try to use, we end up having to construct the subdivision of $K_{3,3}$.

Dijkstra's Algorithm: We construct a tree so that the weighted path between every two vertices is minimum. Consider the graph below:

How do we construct the tree st. the weighted path between each two vertices is a minimum?

	A	B	C	D	E	F	G	H
A	$\underline{0}$	8 A	$2{ }^{\text {A }}$	$5{ }_{A}$	∞	∞	∞	∞
C	-	8 A	$\underline{2}$	4_{C}	7_{C}	∞	∞	∞
D	-	6_{D}	-	4_{C}	5_{D}	10_{D}	7_{D}	∞
E	-	6_{D}	-	-	$5{ }^{5}$	10_{D}	6_{E}	∞
B	-	$\underline{6}$	-	-	-	10_{D}	6_{E}	∞
G	-	-	-	-	-	8_{G}	$\underline{6 E}$	12_{G}
F	-	-	-	-	-	$\underline{8}$	-	11_{F}
H	-	-	-	-	-	-	-	11_{F}

The tree shown above is that of the least weighted path, according to the algorithm that is highlighted in the table above. In words, this is how the algorithm works:

1. Take the first vertex and look at all the adjacent vertices, look at the weight / distance between the first vertex and the others;
2. Take the minimum distance, this will be the first vertex connected. Then we move on to the second vertex and consider the distances between that vertex and the rest, excluding the first vertex;
3. If the distance between that vertex and the others is less than the sum of the distance of the first vertex and the new additional vertex, replace it with that. From here, we again take the minimum, and that will be the next vertex;
4. Continue in this fashion until we reach the end of the set of vertices. Based on the indexed weight between two vertices, we can decide where we want the vertex to go in the construction of the tree.

May 17th, 2021
Recall the idea of subdivisions:

The one on the left is a subidivision of $K_{3,3}$, while the one on the right is not. This is because you cannot share the same "path" to get from one vertex to the other, but you can share the same added vertex to get from one to the other.

Def.: K-factor Let $G(V, E)$ be a connected graph. A spanning subgraph H (using all vertices) that is K-regular is called the K-factor of the original graph, G.

Exp: Does C_{5} have a 1-factor subgraph?

No. We cannot have a spanning subgraph of C_{5} where each vertex is of degree x, which in our case could only be 1 .

- 5

However, we know that C_{6} is a K-fold graph because of the fact that we can draw it as follows:

This is a spanning subgraph of C_{6} that is 1 -factor. Note that the subgraph, H, is a perfect matching of C_{6}.

Result: A connected graph $G(V, E)$ of order n has a 1-factor spanning subgraph iff it has a perfect matching set. This also means that we cannot have an odd order, since a perfect matching set needs to be of even order anyway.

Idea behind K-factor: This is like a puzzle, we take the pieces and when we put them together, we have the graph. Consider the graph of $K_{2,2}$:

We can see that both H_{1} and H_{2} are two spanning subgraphs of $K_{2,2}$ that are 1-factors. If we both the two together, then we clearly get $K_{2,2}$. Recall the Cartesian product (similar to the idea i n Abstract Algebra):

$$
K_{2,2}=H_{1} \oplus H_{2}
$$

Consider $K_{4,4}$. Can we write it as a composition of some K-factor? Yes, we can write it as 4 1factors.

$$
\begin{aligned}
& K_{4,4}=H_{1} \oplus H_{2} \oplus H_{3} \oplus H_{4} \\
& \quad \text { where each } H_{i} \text { is 1-factor }
\end{aligned}
$$

Let us now consider the Petersen graph: Recall that it is 3-regular, not planar and the chromatic index, $\chi^{\prime}=\Delta+1=4$. Can we draw a composition of the Petersen graph into some K-factors?

There is no way that we can draw this graph as some Petersen $=H_{1} \oplus H_{2} \oplus H_{3} \oplus \cdots \oplus H_{n}$ where each H_{i} is some K-factor. However, what if H_{1}, \ldots, H_{n} are not of the same K-factor? We can draw the Petersen graph as $H_{1} \oplus H_{2}$ where H_{1} is 1-factor and H_{2} is 2-factor.

We can see that if we "combine" H_{1} and H_{2}, then we will get the Petersen graph. Also, it is clear that the Petersen graph has a perfect matching, and we would expect at the beginning for it to work as a composition of some K-factor graphs. The problem arises because the pentagon and the star in the middle both have an odd number of vertices.

Now, consider the following graph:

We can see that the graph on the left is 3 -regular and of order 6 . Howwever, we cannot split it into some H_{i} that are K-factor, unless they are of different factors. The two graphs on the right show the composition, showing that $G=H_{1} \oplus H_{2}$ where H_{1} is a 1-factor and H_{2} is a 2-factor. In the final, we might get a graph that we are familiar with and see whether or not we can factor it. There is, however, no theorem on how we can actually do it. It is mostly trial and error.

Consider the graph of $K_{3,2}$. Can we do some partition for this? It has no 1 -factor. But does it have a 2 -factor? No. What about $K_{4,2}$? It is of order 6 , which is even, but not every even ordered graph has a vertex match. $K_{4,2}$ has no perfect matching so it cannot be 1 -factor. It also cannot be any K-factor, as we can easily see through an example of checking for 2 -factor. There will always be a repeated vertex.

What about $K_{4,3}$? Can we construct a 2 -factor of this graph? We can prove that $K_{6,5}$ does not have a spanning subgraph that is K-regular, and then generalize.

Proof: Assume H is a spanning subgraph that is K-regular. Then:

$$
\begin{array}{r}
\sum_{i=1}^{n} \operatorname{deg}\left(v_{i}\right)=K(6+5)=K(11)=2\left|E_{H}\right| \\
\text { But } K \text { is odd and } K(11)=\text { odd. } \\
\Longrightarrow K \text { cannot be odd. Contradiction }
\end{array}
$$

Therefore, $K_{6,5}$ cannot have a spanning subgraph that is 1,3 , or 5 -regular, or any odd number, But we still need to check to see if it has a spanning subgraph that is 2-regular. In the next lecture, we will try to generalize this for $K_{m, n}$.

19th May, 2021
Def.: K-factorable: A connected graph $G(V, E)$ is called K-factorable, $G=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{n}$, where each H_{i} is a K-factor of the original graph G. Recall that each H_{i} is a K-regular spanning subgraph of the original G. When a graph is K-factorable and we have n compositions, that means that our graph G is $(n \times K)$-regular.

Open Problem: (Conjecture)
Assuume G is connected, K-regular of order $n=2 h$.

1. If h is odd, and $K \geqslant h$, then our graph G is 1 -factorable.
2. If h is even, and $K \geqslant h-1$, then our graph G is 1 -factorable.

We do not have a mathematical proof for this. However, using programs and straight computation, we can get the feel that this is correct. Let us come up with some examples where this is right. Consider $K_{2,2} \longrightarrow 2$-regular, $n=2(h)$ where $h=2$ and $K=h=2$. Then:

$$
K_{2,2}=H_{1} \oplus H_{2}
$$

where H_{1}, H_{2} are both 1-factors. Now, consider $K_{n, n}$:

$$
K_{n, n}=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{n}
$$

where each H_{i} is again, 1-factor. We have generalized this for any $K_{m, n}$ where $m=n$.

Result: Let $G(V, E)$ be a connected graph of order n. G has a 2-factor subgraph iff G has a Hamiltonian cycle.

Proof:
\Longrightarrow Assume G has a spanning 2-regular subgraph, H. Then $H=1-2-3-4-\ldots-n-1$. This implies that the graph is Hamiltonian, where $H=C_{n}$.
\Longleftarrow Assume that G is Hamiltonian. This implies that $C_{n}=H$ is a spanning 2-regular subgraph of the original graph. This is exactly what we mean when we say that C_{n} is a 2 -regular subgraph of G.

Now, when does the graph of $K_{m, n}$ have a 2-regular spanning subgraph? This graph is Hamiltonian iff $m=n$. $K_{3,2}$, for example, is not Hamiltonian. When we try to do it, we will never have enough edges to go back to the first.

Sub-result: $K_{m, n}$ is Hamiltonian iff $m=n$.
Thus, we can see that, as an example, $K_{6,5}$ does not have a 2 -factor spanning subgraph because it is not Hamiltonian. This leads us to the conclusion: $K_{m, n}$ has a 2-factor subgraph when $m=n$.
What about the case of K_{n}, with $n \geqslant 3$? It has a 2 -factor because we can write it as:

$$
1-2-3-4-\ldots-n-1
$$

Is $K_{4,4}$ 2-factorable? We are asking to see if we can write $K_{4,4}=H_{1} \oplus H_{2}$ where each H_{i} is a 2-factor.

Yes, $K_{4,4}$ is 2-factorable.

Let us look at some Linear Algebra. Take any graph of the form K_{n}, and look at its adjacency matrix. We know that the adjacency matrix for any graph is alway symmetrical, and from a result in Linear Algebra we have that if a matrix is symmetrical then all its eigenvalues are real. Thus, all eigenvalues of an adjacency matrix of a graph G are real.
Reminder: Take $A, n \times n$ and α is an eigenvalue of A. Then we conclude quickly that:

$$
\exists \quad \text { some point } \neq(0,0, \ldots, 0)
$$

$$
A\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=\alpha\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \neq 0
$$

Look at K_{4} and its adjacency matrix.

$$
\begin{gathered}
{\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
3 \\
3
\end{array}\right]=3\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]} \\
\Longrightarrow 3 \text { is an eigenvalue of } \operatorname{adj}\left(K_{4}\right)
\end{gathered}
$$

What if we take K_{5} instead of K_{4} ? Then this implies that 4 is an eigenvalue of $\operatorname{adj}\left(K_{5}\right)$. In general, the sum of the rows (or columns) of the adjacency matrix (should all be equal) is an eigenvalue for the adjacency matrix. Thus $n-1$ is an eigenvalue of $\operatorname{adj}\left(K_{n}\right)$. However, this is not the only eigenvalue of $\operatorname{adj}\left(K_{n}\right)$.
How do we calculate eigenvalues in general?

$$
\begin{array}{r}
\text { Set }\left|X I_{n}-\operatorname{adj}\left(K_{n}\right)\right|=0 \\
\text { find } X \\
X I_{n}-\operatorname{adj}\left(K_{n}\right)=\left[\begin{array}{ccccc}
X & -1 & -1 & \ldots & -1 \\
-1 & X & -1 & \ldots & -1 \\
\vdots & -1 & \ddots & -1 & \vdots \\
\vdots & \vdots & \vdots & \ddots & -1 \\
-1 & -1 & -1 & \ldots & X
\end{array}\right] \\
\text { We want }\left|\left[\begin{array}{ccccc}
X & -1 & -1 & \ldots & -1 \\
-1 & X & -1 & \ldots & -1 \\
\vdots & -1 & \ddots & -1 & \vdots \\
\vdots & \vdots & \vdots & \ddots & -1 \\
-1 & -1 & -1 & \ldots & X
\end{array}\right]\right|=0 \\
\text { If } X=-1 \Longrightarrow\left|X I_{n}-\operatorname{adj}\left(K_{n}\right)\right|=0
\end{array}
$$

$$
\text { Thus }-1 \text { is also an eigenvalue of } \operatorname{adj}\left(K_{n}\right)
$$

These are the only two eigenvalues of the adjacency matrix. The characteristic polynomial of $\operatorname{adj}\left(K_{n}\right)=(X-(n-1))(X+1)$. Let us calculate the eigenspace of -1 , and we will show that it will have dimension $n-1$.

$$
\begin{array}{r}
(-1) I_{n}-\operatorname{adj}\left(K_{n}\right)\left[\begin{array}{ccccc}
-1 & -1 & -1 & \ldots & -1 \\
-1 & -1 & -1 & \ldots & -1 \\
\vdots & -1 & \ddots & -1 & \vdots \\
\vdots & \vdots & \vdots & \ddots & -1 \\
-1 & -1 & -1 & \ldots & -1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right] \\
\quad-x_{1}-x_{2}-x_{3}-\cdots-x_{n}=0 \\
x_{1}=-x_{2}-x_{3}-x_{3}-\cdots-x_{n}
\end{array}
$$

We have $n-1$ free variables, which means that the dimension of the eigenspace of -1 is $n-1$. Thus the characteristic polynomial of $\operatorname{adj}\left(K_{n}\right)$ is:

$$
(X+1)^{n-1}(X-(n-1))
$$

This means that the eigenvalue -1 is repeated $n-1$ times, and the eigenvalue $n-1$ is repeated once.
For $K_{m, n}$, the eigenvalues are 0 , repeated $n+m-2$ times, and $\sqrt{n m}$ and $-\sqrt{n m}$ each repeated once.

$$
\left(X^{2}-n m\right) X^{n+m-2}
$$

This part of the course will not be included in the final exam.
0.0.3 Notes on Planar, Line Graph, and Chromatic

Home Work V , MTH 418 , Fall 2021,

Ayman Badawi

Questions with Solutions

QUESTION 1. (1) Convince me that $K_{5,2}$ is a planar
Solution: See the picture

(2) Note, nothing special about 5 . using the same concept, $K_{n, 2}$ is a planar.
(3) How many faces does $K_{n, 2}$ have ?

Solution: \mathbf{n} faces? why? $K_{n, 2}$ is of order $n+2$ and size $2 n$. Hence $n+2-2 n+f=2$. Thus $f=n$.
QUESTION 2. (1) What is the order and the size of $L\left(K_{5}\right)$?
Solution: Since K_{5} has size 10, the order of $L\left(K_{5}\right)$ is 10 . Since each vertex of K_{5} is of degree 4 , by class result, the size of $L\left(K_{5}\right)=\frac{54^{2}-20}{2}=30$.
(2) What is the order and size of $\overline{L\left(K_{5}\right)}$?
solution: We know that if G is connected of order n, then the size of $\mathbf{G}+$ the size of $\bar{G}=\operatorname{size}$ of $K_{n}=n(n-1) 2$. Since $L\left(K_{5}\right)$ is of order 10 and size 30 , we conclude that $30+$ size of $\overline{L\left(K_{5}\right)}=$ size of $K_{10}=45$. Hence size of $\overline{L\left(K_{5}\right)}=15$
(3) NICE!. Now $\overline{L\left(K_{5}\right)}$ is of order 10 and size 15. In fact, it is isomorphic to the Petersen graph! (just believe me!). so the chromatic number of $\overline{L\left(K_{5}\right)}$ is $\Delta=3$ and the chromatic index of $\overline{L\left(K_{5}\right)}$ is $\Delta+1=4$.
(4) What is the chromatic number of $L\left(K_{5}\right)$?

Solution: We know that chromatic number of $L\left(K_{5}\right)=$ chromatic index of K_{5}. Hence by class notes (5 is odd), we conclude that the chromatic number of $L\left(K_{5}\right)=5$
(6) Convince me that $L\left(K_{5}\right)$ is an k-regular graph for some k.

Solution: Let w be a vertex in $L\left(K_{5}\right)$, then $w=u-v$ is an edge of K_{5} for some vertices u, v of K_{5}. By class notes, $\operatorname{deg}(\mathbf{w})=\operatorname{deg}(\mathbf{u})+\operatorname{degree}(\mathbf{v}) \mathbf{- 2 = 4 + 4 - 2 = 6}$. Thus $L\left(K_{5}\right)$ is 6-regular.
(7) Let e be an edge of K_{5} and $G=K_{5}-e$. Show that G is a planar. Then find $\chi(G)$ and $\chi^{\prime}(G)$.

Solution: Note that G is of order 5 and size 9. G satisfies the two properties of a planar graph discussed in class. Also note that two vertices of G are of degree 3 and three vertices of G are of order 4 . Here is the picture of G.

For the vertices:
A is red
B is green
C is blue
D must have diff, color since it is adjacent to A, B, C. So
D is black.
E is blue (note E is adjacent to D, B, A)
So chromatic number is 4 .
(8) Let G as in (7). Find $\chi(G)$ and $\chi^{\prime}(G)$.

Solution: By staring. We see that $\chi(G)=\chi^{\prime}(G)=4$

QUESTION 3. Let G be a connected graph of order 12 with the following degrees $3,3,3,3,2,2,2,2,2,2,2,2$.
(1) Find the order and the size of $L(G)$.

Solution: Let \mathbf{E} be the set of all edges of G. Then \sum degrees of vertices of $G=2|E|$. Thus $(\mathbf{1 2}+\mathbf{1 6}) / \mathbf{2}=|\mathbf{E}|$ $=14$. Hence the order of $L(G)$ is $\mathbf{1 4}$. The size of $L(G)$ (by class notes) is $\left(4.3^{2}+8.2^{2}-28\right) / 2=20$.
(2) Show that G is a planar.

Solution: Here is the picture

(3) Find $\chi(G)$ and $\chi^{\prime}(G)$

By staring, we see that G is bipartite. Hence by class result, $\chi^{\prime}(G)=\Delta=3$ and $\chi(G)=2$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

0.1 Worked out Solutions for all Assessment Tools

(i) $d(1,6)=2$
(iii) $d(4,1)=1$
(iii) 1-4-5-3-6-2-1-3 is not a path because it has repeated vertices: 1,3
(iv) A cycle of length $4: 1-2-6-3-1$
(v) Yes, the graph is 3 -regular $(k=3)$
because each vertex has a degree $=3$.

QQ $3,2,2,3,2,2$
Ste Q_{1} descending order:
3, 3,2,2,2,2
Step (2): Using Hakimi-Havel Algorithm:

we can construct this graph \Rightarrow we
can construct the original.
The graph:

- Is it connected? Yes, there is a path between every 2 vertices.
- Is it complete? NO, 1 and 5 are not connected by an edge, for example

QB $3,1,1,3,3,3$
Step Q: descending order:

$$
3,3,3,3,1,1
$$

Step (2) Hakim:-Havel Algorithm:

(3) $, 3,3,3,1,1$	$0,1,1$
$-1-1$	1
$1,-1$	$1,1,0$
(2, $2,2,1,1$	-1
-1	1
$\downarrow-1,1,1,1$	0,0
$(1,-1,1$	

we can construct this graph \Rightarrow we can construct the original.
The graph:

- Is it connected? No, there is no path between 1 and 3 , for example.
- Is it complete? No.

QU $V=Z_{8}=\{0,1,2,3,4,5,6,7\}$
$E=\{0-2,0-4,0-6,1-3,1-5,1-7,2-4,2-6,3-5,3-7,4-6,5-7\}$

The graph:

(5)

- Is the graph connected? No, because there is not a path between every 2 vertices (for example: no path between 1 and 2)
- Is the graph complete? No

MTH418 - Homework II

By Dara Varam

March 2nd, 2021
Question 1:

$$
A_{1}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right), A_{2}=\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

i. For G_{1} :

$$
\operatorname{deg}\left(v_{1}\right)=2, \operatorname{deg}\left(v_{2}\right)=2, \operatorname{deg}\left(v_{3}\right)=1, \operatorname{deg}\left(v_{4}\right)=3, \operatorname{deg}\left(v_{5}\right)=2
$$

For G_{2} :

$$
\operatorname{deg}\left(v_{1}\right)=1, \operatorname{deg}\left(v_{2}\right)=2, \operatorname{deg}\left(v_{3}\right)=2, \operatorname{deg}\left(v_{4}\right)=3, \operatorname{deg}\left(v_{5}\right)=2
$$

ii. Drawing G_{1} and G_{2} :

iii. Construct a mapping from G_{1} to G_{2} to show isomorphism:

$$
\begin{aligned}
f: G_{1} & \longrightarrow G_{2} \\
f\left(v_{1}\right) & =w_{5} \\
f\left(v_{2}\right) & =w_{2} \\
f\left(v_{3}\right) & =w_{1} \\
f\left(v_{4}\right) & =w_{4} \\
f\left(v_{5}\right) & =w_{3}
\end{aligned}
$$

iv. Is G_{1} or G_{2} a $K_{m, n}$ for some $m, n \in \mathbb{Z}^{+}$? Draw them if so.

Assume G_{1} is $K_{m, n}$ for some $m, n, \in \mathbb{Z}^{+}$. Then it has exactly $m+n$ vertices and $m \times n$ edges. Since we know that G_{1} has 5 edges, $m \times n=5$. This means that $m=1, n=5$ or $m=5, n=1$. In either case, we have that the total number of vertices is $m+n=1+5=6$, but G_{1} only has 5 vertices. A contradiction. Therefore G_{1} is NOT $K_{m, n}$.

Similarly for G_{2}, we proceed by contradiction. Assume G_{2} is $K_{m, n}$. Then $m \times n=5 \Longrightarrow$ $m=1, n=5$ or $m=5, n=1$. This implies that the number of vertices is $m+n=6$, but we only have 6 vertices

Another argument: Since we showed through the mapping of f that $G_{1} \approx G_{2}$, then if G_{1} is not $K_{m, n}$, automatically G_{2} is not either.

For G_{1} :

We have a bipartite graph (can divide into set $A=\left\{v_{1}, v_{3}\right\}$ and $B=\left\{v_{2}, v_{4}, v_{5}\right\}$), but this is NOT a complete bipartite graph.
For G_{2} :

Once again we have a bipartite graph $\left(A=\left\{w_{1}, w_{2}, w_{3}\right\}\right.$ and $\left.B=\left\{w_{4}, w_{5}\right\}\right)$ but we do not have a complete bipartite graph.
v. Find the permutation matrix p st $p A_{1}=A_{2} p$

1. Take I_{5} :

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

2. $R_{1} \mapsto R_{5}$

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

3. $R_{3} \mapsto R_{1}$

$$
\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

4. $R_{5} \mapsto R_{3}$

$$
\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Therefore, the p we obtain that satisfies the equation $p A_{1}=A_{2} p$ is:

$$
\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

vi. We start with A_{1} and perform the following operations:

1. $R_{1} \mapsto R_{5}$
2. $R_{3} \mapsto R_{1}$
3. $R_{5} \mapsto R_{3}$

$$
A_{1}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1
\end{array}\right) \Longrightarrow\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1
\end{array}\right) \Longrightarrow\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

4. Take the matrix you obtain here, and call it C. Now, replace the following columns in your new matrix C as follows:
5. $C_{1} \mapsto C_{5}$
6. $C_{3} \mapsto C_{1}$
7. $C_{5} \mapsto C_{3}$

$$
\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1
\end{array}\right) \Longrightarrow\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right)=A_{2}
$$

You will end up with A_{2} upon completing all the steps.

Question 2:

$$
V=\{3,5,6,9,10,12\}
$$

Two vertices a, b are connected by an edge iff $a \cdot b=0 \in \mathbb{Z}_{15}$ (multiplication modulo 15). We proceed with the multiplication table to be able to draw our graph:

\times_{15}	3	5	6	9	10	12
3	9	0	3	12	0	6
5	0	10	0	0	5	0
6	3	0	6	9	0	12
9	12	0	9	6	0	3
10	0	5	0	0	10	0
12	6	0	12	3	0	9

Now we draw the graph:

1. Show that G is a $K_{m, n}$ for some $m, n \in \mathbb{Z}^{+}$

Choose the sets $A=\{3,6,9,12\}$ and $B=\{5,10\}$. We can see that this graph is a complete bipartite. This is because each of both 5 and 10 are connected to very vertex in the other set, A. Therefore, we can say that G is $K_{m, n}$ for $m=2$ and $n=4$. In other words;

$$
G=K_{2,4}
$$

2. Find the girth of G :

The shortest cycle in the graph: $3-5-9-10-3$. The other cycles in the graph are also of the same length, which is 4 . Therefore;

$$
\operatorname{girth}(G)=4
$$

Another argument: Since $G=K_{2,4}$ with $2,4 \geqslant 2$, we have that the shortest cycle length is always 4 (by result introduced in the lecture).
3. Find the diameter of G :

The maximum distance between two vertices in our graph is 2 . That means that each pair of vertices are at most 2 edges apart. Therefore;

$$
\operatorname{dim}(G)=2
$$

Another argument: Once again, by previous result introduced in the lecture, we know that for any complete bipartite graph $K_{m, n}, \operatorname{diam}\left(K_{m, n}\right)=2$.
4. Construct a minimum dominating set of G and determine the dominating number.

Since our graph is $K_{2,4}$, we take one vertex from each subset of vertices, say 10 and 9 . Thus we have the dominating set $\{9,10\}$. Every vertex outside of this set is connected to one of the two. Since this set consists of two elements, we have that:

$$
\gamma(G)=2
$$

Note that any pair of vertices that from separate vertex subsets can be a dominating set. We could have chosen $\{3,5\}$ to be our dominating set, but $\gamma(G)$ would stay the same.

Question 3:

$$
V=\{2,3,4,6,8,9,10\}
$$

\times_{12}	2	3	4	6	8	9	10
2	4 6 8 0 4 6 8 3 6 9 0 6 0 3	6					
4	8	0	4	0	8	0	4
6	0	6	0	0	0	6	0
8	4	0	8	0	4	0	8
9	6	3	0	6	0	9	6
10	8	6	4	0	8	6	4

We draw the graph:

1. Show that G is NOT $K_{m, n}$ for some $m, n \in \mathbb{Z}^{+}$

Assume G is $K_{m, n}$ for some $m, n \in \mathbb{Z}^{+} . \Longrightarrow|E|=m \times n=8$ (we know this from the graph drawn above).

We could have $m=2, n=4$ or $m=4, n=2$. In either case, we know that $m+n=6$, but we have 7 edges. A contradiction.

We could also have $m=8, n=1$ or $m=1, n=8 . ~ m+n=9 \neq 7$. Still a contradiction.
Therefore it is impossible for us to have a complete bipartite graph. However, since we have no odd cycles, we can still construct a bipartite graph from G :

We have produced a bipartite graph that consists of $A=\{3,6,9\}$ and $B=\{2,4,8,10\}$. This bipartite graph is NOT complete because the vertex 3 is not connected to every vertex in the set B, namely 2 and 10 . Similarly, 9 is not connected to 2 and 10 .
2. Find the girth of G :

We have two cycles within the graph: $3-4-6-8-3$ and $9-4-6-8-9$. Both of which are of length 4 , and therefore:

$$
\operatorname{girth}(G)=4
$$

3. Find the diameter of G :

The maximum distance between two vertices in our graph G is between the vertex 2 and 3, or 10 and 3 , or 10 and 9 or 2 and 9 . They all have the same length. We will use the distance between 2 and 3 as an example. The path is:

$$
2-6-4-3
$$

The rest of the pairs also follow in similar fashion. In each case, $d(a, b)=3$. We do not have any distances longer than that in our graph. Therefore:

$$
\operatorname{dim}(G)=3
$$

4. Construct a minimum dominating set and determine the dominating number of G :

Consider the set consisting of $\{4,6\}$. Every vertex outside of this set is either connected to 6 through an edge, or connected to 4 through an edge. We could alternatively go with the dominating set $\{6,8\}$. In both cases, the same principle applies.

$$
\gamma(G)=2
$$

${ }^{0.1 .3}$ Solution for HW III

MTH418 - Homework III

by Dara Varam

March 18th, 2021

Question 1: Let $G(V, E)$ be a connected graph of order n. Show that the size of G is $\geqslant n-1$.
Since G is a connected graph, there are two possibilities: It is either a graph with cycles or a graph with no cycles (a tree). Let $|E|$ be the number of edges (or the size) for G. We proceed as follows:

- Assume G is a tree (no cycles) We know by class result that $|E|=n-1$
- Assume G contains cycles (at least one), then the path between some pair of vertices is not unique.

In a tree, we know that the path between two vertices v_{i} and v_{j} is unique. However, since this graph contains cycles, there is at least some pair of vertices, v_{f} and v_{g} st. there is more than one path, formed by k edges. Thus $|E|=n-1+k$. Knowing that $|E|$ has increased by some constant k, we conclude that: $|E|>n-1$.

If we combine the two cases, we can see that regardless of whether the graph G contains cycles or not, it will always be st. $|E| \geqslant n-1$, where n is the order of the graph.

Question 2: Let T be a tree of order 13. The degrees of the vertices of T are 1, 2 and 5. If T has exactly 3 vertices of degree 2 , how many end-vertices does it have?

All degrees of vertices in T are of order 1, 2 or 5 , but we can only have 3 vertices of degree 2 . Let us draw a tree as such to be able to better visualize the requirements:

In this tree, we can see that there are exactly 3 vertices st. $\operatorname{deg}(v)=2$, we have 8 vertices st. $\operatorname{deg}(v)=1$, and we have 2 vertices st. $\operatorname{deg} .(v)=5$. Thus T (shown above) fits the requirements of the question.

To generalize this solution, we know that since we have exactly 3 vertices $s t . \operatorname{deg}(v)=2$, then we have 10 vertices of either order 5 or 1 .

Let m be the size of T. We know through the class notes that the size of a tree is $n-1$. In this case, $m=12$. Let E be the number of vertices st $\operatorname{deg}(v)=1$. Thus we have that $(10-E)$ is the number of vertices st. $\operatorname{deg}(v)=5$. From class notes, we know that the sum of degrees is $2 \times m$. Thus if we sum the degrees:

$$
\begin{array}{r}
\sum_{i=0}^{n} \operatorname{deg}\left(v_{i}\right)=2 m=24 \\
3(2)+E(1)+(10-E)(5)=24 \\
6+E+50-5 E=24 \\
-4 E=-32 \\
\Longrightarrow E=8
\end{array}
$$

Therefore, the number of vertices st. $\operatorname{deg}\left(v_{i}\right)=1$ is 8 . There are 8 vertices with degree 1 regardless of how we draw the tree.

Question 3: Construct a minimum dominating set of C_{14} and P_{10}
We can draw the graph for C_{14} :

$$
1-2-3-4-5-6-7-8-9-10-11-12-13-14-1
$$

Consider the following set:

$$
\{3,6,9,12,14\}
$$

It is easy to observe that every element outside of $\{3,6,9,12,14\}$ is connected by an edge to at least one of the 5 elements. We can draw this to further demonstrate:

Therefore, $\gamma\left(C_{14}\right)=5$, and our minimum dominating set:

$$
\{3,6,9,12,14\}
$$

For P_{10}, we first draw the graph:

$$
1-2-3-4-5-6-7-8-9-10
$$

Consider the set $\{2,5,8,10\}$. We can draw the graph to see the following:

1

Clearly, every element outside of $\{2,5,8,10\}$ is connected to one of those 4 elements, and therefore we know that $\gamma\left(P_{10}\right)=4$ with our minimum dominating set:

$$
\{2,5,8,10\}
$$

Question 4: Consider the graph below:

i. Is $A-G-F-B$ an induced subgraph of our graph?

We can draw the graph for $A-G-F-B$:

The definition of an induced subgraph states that this new graph (let's call it $\boldsymbol{G}^{\prime}\left(V_{1}, E_{1}\right)$) must be a subgraph of \boldsymbol{G}, and it must also be st. $e \in E_{1}$ iff $e \in E$.
We can see that $V_{1}:=\{A, G, F, B\}$, and clearly $V_{1} \subset V:=\{A, B, C, D, E, F, G, H, I\}$. However, A and B are connected through an edge in the original graph but not in the subgraph. Therefore, since $A-B$ is not in the new graph, it is NOT an induced subgraph.
ii. Is our graph bipartite?

The only cycle in the graph is $A-G-F-B-A$, which is of even length. Therefore we can construct a bipartite graph isomorphic to G :

We can take the set $\alpha:=\{B, E, I, G\}$ and $\beta:=\{C, D, F, A, H\}$. There are no adjacent vertices in either α or β; the only vertices are between elements of α and elements of β. Therefore, G is bipartite.
iii. By staring, find $\operatorname{diam}(G)$

The maximum distance between two vertices in G is 4 , which can we obtained by taking $d(C, H), d(D, H)$ or $d(E, I)$. In either case, the length of the path is 4 , which leads us to the conclusion:

$$
\operatorname{diam}(G)=4
$$

iv. Find the dominating set of G and thus find the dominating number.

Take the set $\{B, F, A, G\}$ or $\{B, E, I, G\}$. In both cases, every vertex outside of those 4 is connected to at least one of them. We cannot construct a set smaller than this, and therefore,

$$
\gamma(G)=4
$$

Question 5: Let G be a connected graph, and let e be an edge that is a bridge. Show that e is an edge of every spanning tree of G.
Let $V:=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertices of G, and $E:=\left\{e_{1}, e_{2}, \ldots, e, \ldots, e_{n}\right\}$ be the set of edges.
Since e is a bridge, then removing it will cause the graph to be disconnected. Let $T\left(V_{1}, E_{1}\right)$ be a spanning tree of of G. Since T is a spanning tree, then $V_{1}=V$ (All vertices in G are also in T). Since T is also a tree, then there are no cycles, and the path between each pair of vertices is unique (from class notes).
Take two vertices, v_{i} and v_{j} st. $e=v_{i}--v_{j}$ (e is the edge that connects the two vertices). Since the path is unique, then e is the ONLY edge between the two vertices. If we were to remove e, then the graph would be disconnected, and thus we wouldn't have a spanning tree anymore (disconnections: no path between ALL vertices). Thus e has to be an edge between v_{i} and v_{j}.
Since v_{i} and v_{j} are ANY two vertices in the spanning tree, we know that this works for all edges. Therefore e is an edge of every spanning tree of G.

Question 6: Consider the graph below:

i. Find all cut-vertices of G

$$
B, C, D \text { and } E
$$

The vertices B, C, D and E are all cut-vertices. Why is this the case? Because in each of the 4 cases, the removal of said vertex will cause the graph to be disconnected.
Removing B will cause the vertex A to be disconnected from the rest of the graph.
Removing C will cause the graph to split into two disconnected components $(A-B-$ G and $D-E-F)$.
The same applies for removing D (disconnects E and F from the graph) and removing E (F is left by itself).

ii. Find all bridges of G

The edges you can remove to cause the graph to be disconnected are:

- $A-B$
- $\quad C-D$
- $\quad D-E$
- $E-F$

These are the only edges whose removals will cause the graph to be disconnected, and therefore are the bridges of G.
iii. By staring, find $\operatorname{diam}(G)$

The maximum distance between two vertices is the distance between vertices A and F. The shortest path between the two is: $A-B-C-D-E-F$, which is a path of length 5. Therefore:

$$
\operatorname{diam}(G)=5
$$

iv. Draw the complement of G. Is \bar{G} connected? How many edges does \bar{G} have?

The below is two versions of the graph of G (One is slightly less ugly than the other, although both are exactly the same (isomorphic)):

We know that our original graph, G, has 7 edges (by staring). Since the graph has 7 vertices, we consider the size of the graph of K_{7}, which is 21 . We subtract 7 from this quantity to get the size of \bar{G}, which is given by:

$$
\operatorname{size}(\bar{G})=21-7=14
$$

We can double-check this with the graph we have drawn.
v. Draw 2 non-isomorphic spanning trees of G :

Graph Theory - Homework 4

Rohan Mitra

Q1) G is a graph order n, M is a maximum matching.
i)If M is a perfect matching, prove n is even.

By definition of a matching, M must consist of edges that is not incident on any other edge in the graph. This implies that a matching contains edges joining distinct vertices. Since M is a perfect matching, it contains all the vertices of G, implying that every vertex has degree exactly 1 in M . Moreover, since an edge can only connect 2 distinct vertices, we have that n must be a multiple of $2 . m(G)=|M|=\frac{n}{2}$
ii)Assume M is a perfect matching, show M is a minimum edge cover.

Let V_{M} be the set of vertices in the matching M. Since G has no isolated vertices, we can find a perfect matching. Since M is a perfect matching, we have $M=\left\{a_{1}-b_{1}, \ldots, a_{n}-b_{n}\right\}$ s.t:
$V_{M}=\{a, b \mid a-b \in M\}=V$. Thus $\forall a \in V, \exists a-b \in M$ for $b \in V_{M}$
Hence, by definition, M is a minimum edge cover.
We also know that $m(G)+\beta_{e}(G)=n$, where $m(G)=\frac{n}{2}$ from above.
Hence, $\beta_{e}(G)=\frac{n}{2}$ as well, consistent with our result above.
iii)Let $H\left(V, E_{c}\right)$ be a spanning subgraph of G . Show H is bipartite.

We show that H has no cycles, which would make it bipartite.

Since E_{c} is a minimum vertex cover, we know that if there is a cycle in G , we would not pick all the vertices in the cycle to be in E_{c} because adding the edge that completes a cycle would be redundant since there already exist an edge connecting the last two vertices in a path (that would form a cycle if connected). Hence, by construction, E_{c} would not contain any edges that would form cycles in H .
iv) H is as above. Let M_{c} be a max matching of H . Prove M_{c} is a maximum matching of G .

We know $m(G)+\beta_{e}(G)=n$. Moreover since H contains E_{c} we can conclude that $\beta_{e}(G)=\beta_{e}(H)=\left|E_{c}\right|$.

We have: $m(G)+\beta_{e}(G)=n$ and $m(H)+\beta_{e}(H)=n$
Since $\beta_{e}(G)=\beta_{e}(H)$, we can conclude $m(G)=m(H)=\left|M_{c}\right|$
Since H contains all vertices from G, all the edges of H is E_{c} and since M_{c} is the maximum matching of H, we conclude that M_{c} must be the maximum matching of G.

Qu)
i) Let A and B be the sets of $B_{m, n}$ s.t $|A|=m$ and $|B|=n$.

Since T is a tree, we know it is connected. Hence, the number of vertices in A that are connected to vertices in B is exactly m. Similarly the number of vertices in B that are connected to vertices in A is exactly n.
Since $m>n$, we know from a class result that $m(T)=n$.
Since T is connected, it has no isolated vertices, hence:
We know $m(T)+\beta_{e}(T)=|V|=m+n$
Hence $\beta_{e}(T)=|V|-m(T)=m+n-n=m$
ii)We see that $L\left(K_{1, n}\right) \approx K_{n}$ Let v_{1} be the root of $K_{1, n}$. Since every edge in $K_{1, n}$ is incident on $v_{1}, L\left(K_{1, n}\right)$ would have $V=\left\{v_{1}\right\}$.With all vertices of $L\left(K_{1, n}\right)$ being connected to each other because they are all incident on v_{1} in $K_{1, n}$. Hence it would be isomorphic to K_{n}
iii)

a)Yes, it is bipartite because there are no odd cycles!

b) Max matching $=\{\mathrm{A}-\mathrm{B}, \mathrm{C}-\mathrm{E}, \mathrm{F}-\mathrm{G}, \mathrm{H}-\mathrm{I}, \mathrm{K}-\mathrm{J}\}, m(G)=\min \{5,6\}=5$
c) Min edge cover $=\{\mathrm{A}-\mathrm{D}, \mathrm{B}-\mathrm{C}, \mathrm{F}-\mathrm{E}, \mathrm{G}-\mathrm{H}, \mathrm{I}-\mathrm{K}, \mathrm{J}-\mathrm{K}\}, \beta_{e}(G)=6$
d) Min Vertex cover $=\{\mathrm{A}, \mathrm{C}, \mathrm{F}, \mathrm{H}, \mathrm{K}\}, \beta(G)=\min \{5,6\}=5$
e) Max independent $=\{\mathrm{D}, \mathrm{B}, \mathrm{E}, \mathrm{G}, \mathrm{I}, \mathrm{J}\}, \alpha(G)=\max \{5,6\}=6$
f) Min dominating $=\{\mathrm{B}, \mathrm{C}, \mathrm{G}, \mathrm{K}\}, \gamma(G)=4$

Q4)

i) $\operatorname{Draw} L(G)$:

ii)

$$
\begin{aligned}
& A \\
& B \\
& C \\
& D \\
& E \\
& F
\end{aligned}\left[\begin{array}{ccccc}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]=N
$$

iv) Using Python program I wrote:

```
L}=[[0. 1. 1. 0. 0.] 
    [1. 0. 1. 0. 0.]
    [1. 1. 0. 1. 1.]
    [0. 0. 1. 0. 1.]
    [0. 0. 1. 1. 0.] ] We notice that L=H.
```

L :

Yes, $L \approx L(G)$, by the identity map!
0.1.5 Solution for Exam I

Midterm 1 83776

Question 1:

i) Yes the graph is bipartite because there are no odd cycles.

The graph is actually a complete bipartite $k_{3,3}$.
ii)

$\overline{K_{3,3}}$ is not connected. It has 2 components.

COMPONENT 1 COMPONENT 2
iii) A maximum independent set is:

$$
\left\{v_{1}, v_{5}, v_{6}\right\} \cdot \alpha(G)=3 .
$$

iv) A minimum vertex cover is:

$$
\left\{v_{2}, v_{3}, v_{4}\right\} . \beta(G)=3 .
$$

v) A minimum dominating set that is not a minimum vertex cover is:

$$
\left\{v_{1}, v_{2}\right\} . \gamma(G)=2 .
$$

Question 2:
i) We know that for a tree with

$$
\begin{aligned}
& |V|=10, \quad|E|=9 . \\
& \sum \operatorname{deg}(v)=2|E|=2(9)=18 \\
& 18=3+1+1+1+1+1+3+5+x+y \\
& 18=16+x+y \\
& 2=x+y
\end{aligned}
$$

x and y can be:
Case 1: $x=2, y=0$
This will not work because there will be an isolated vertex ($\operatorname{deg}(0))$ which means the graph will be disconnected, which means it is not a tree.

Case 2: $x=0, y=2$
This will not work for the same reason above for case 1.

Case 3: $x=1, y=1$.
This will work because the graph will remain connected. We can even draw it:

ii) If T is a spanning induced tree of G, then it must include all vertices of G, as well as all edges attached to the vertices. Therefore, T is G. Since T is a tree, and T is G, G is also a tree. It must not have any cycles, and must only have one unique path between every 2 vertices. This means it is bipartite. The number of edges in $G=n-1$ since it is a tree.

Assume $|A|=m$ and $|B|=n$, where $V=A \cup B$ and $A($ Intersection B) = empty, (every two vertices in A are not connected by an edge and every two vertices in B are not connected by an edge).

Since G is bipartite and each vertex in A has degree r, it is clear that $|E|=r m$. Also since G is bipartite and each vertex in B is of degree r, again it is clear that $|E|=r n$. Hence $|E|=r m=$ rn.
Since $r n=r m$ and r not $=0$, we conclude $n=m$
iv) We can use the Havel Hakimi Algorithm to check if such a graph can be constructed.

$$
\begin{aligned}
& \Delta 3,3,3,2,2,2,1 \\
& \Delta Q_{-1}^{3} 3,2,2,2,1 \\
& \Delta 2,2,1,2,2,1 \\
& \Delta Q_{-1}^{2}, 2,2,1,1
\end{aligned}
$$

$$
\mapsto \quad 1,1,2,1,1
$$

$$
\Delta \otimes \underset{-1}{1}, 1,1
$$

$$
\leftrightarrow 0,0,1,1
$$

$$
L>\underbrace{1}_{-1} 0,0
$$

$40,0,0$. Yes, a graph can be constructed.

First let us draw the graph normally.

Since it has no odd cycles it is bipartite.

$\operatorname{Girth}\left(B_{4,3}\right)=4$
Example: $v_{1}-v_{7}-v_{6}-v_{5}-v_{1}$
v) We can use the Havel Hakimi Algorithm to check if such a graph can be constructed.

$$
\begin{aligned}
& \Delta 6,6,5,4,3,3,1 \\
& L \underbrace{6}_{-1-1}, \underbrace{5}_{-1}, \underbrace{3,3,1}_{-1}
\end{aligned}
$$

$$
\rightarrow \underbrace{4,}_{-1} \underbrace{3,2,2,0}_{-1-1-1-1}
$$

$$
43,2,1,1,-1
$$

STOP! we have a negative number, thus a stopping condition is met and we cannot construct the graph.

Question 3.

G_{2}

i)

$$
\begin{aligned}
& f: G_{1} \longrightarrow G_{2} \\
& f\left(v_{1}\right)=w_{5} \\
& f\left(w_{2}\right)=w_{2} \\
& f\left(v_{3}\right)=w_{1} \\
& f\left(w_{4}\right)=w_{4} \\
& f\left(v_{5}\right)=w_{3}
\end{aligned}
$$

ii)

$$
A_{1}=\left[\begin{array}{lllll}
V_{1} & V_{2} & V_{3} & V_{4} & V_{5} \\
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right] \begin{aligned}
& V_{1} \\
& V_{2} \\
& V_{3} \\
& V_{4} \\
& V_{5}
\end{aligned}
$$

$$
\begin{gathered}
w_{1} \\
w_{2} \\
w_{3}
\end{gathered} w_{4} w_{5} .\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right] \begin{aligned}
& w_{1} \\
& w_{2} \\
& w_{3} \\
& w_{4} \\
& w_{5}
\end{aligned}
$$

iii) Start from I_{5} and change the rows according to bijective function.

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\text { Replace } R_{5}}\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& \xrightarrow[\text { (no change) }]{\substack{\text { Replace } R_{2} \\
\text { by } R_{2}}}\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{\text { Replace } R_{1}} \begin{array}{l}
\text { by } R_{3} \\
\end{array} \\
& {\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] \stackrel{\begin{array}{lllll}
\text { Replace } R_{4} \\
\text { by } R_{4} \\
(\text { no change })
\end{array}}{ }\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& \xrightarrow{\text { Replace } R_{3}} \text { by } R_{5}\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]=P
\end{aligned}
$$

iv) To get A_{2} from A_{1}, Replace the rows of A_{1} as follows:
\rightarrow Replace R_{5} by R_{1}
\rightarrow Replace R_{2} by R_{2}
\rightarrow Replace R_{1} by R_{3}
\rightarrow Replace R_{4} by R_{4}
\rightarrow Replace R_{3} by R_{5}
Then, replace the columns of the obtained matrix as follows:
\rightarrow Replace C_{5} by C_{1}
\rightarrow Replace C_{2} by C_{2}
\rightarrow Replace C_{1} by C_{3}
\rightarrow Replace C_{4} by C_{4}
\rightarrow Replace C_{3} by C_{5}

Question 4:

i) $\{B, E, M, G, I\} \quad \gamma(G)=5$.
ii) $\{A, C, E, H, J, L, N\} \alpha(G)=7$.
iii) $\operatorname{diam}(G)={ }^{8} \quad$ For example $(A, A, N)=8$
iv) $\{B, C, D, E, K, L, M\}$
v) $\{(A-B),(B-C),(C-D),(D-E),(N-M)$, $(M-L),(L-K)\}$

Question 5:
i) $d(0101,1001)=$ number of places they differ in $=2$.

Shortest Path: 0101-1101-1001
ii) girth $\left(Q_{4}\right)=4$

Cycle:

Question 1:
i) Assume G is planar. Then:

$$
\begin{gathered}
n-m+f=2 \\
6-9+f=2 \\
f=5
\end{gathered}
$$

Is $3 f \leqslant 2 m$?

$$
\begin{aligned}
& 3(5)=15 \quad 15 \leqslant 18 \\
& 2(9)=18
\end{aligned}
$$

Is $m \leqslant 3 n-6$?

$$
9 \leqslant 3(6)-6=12
$$

Since the formulas are satisfied we move on to Kuratowski's Theorem.

Does G have a subgraph that is a subdivision of $k_{3,3}$ or k_{5} ?

It is not possible to construct a subgraph that is a subdivision of $k_{3,3}$ or k_{5}. Therefore G must be planar.
$Q \backslash(I)$
So draw it $1^{\text {st }}$ observe degree of each
vertex is 3 (hi swill help)

ii)

HAMILTONIAN

$$
C_{6}: v_{1}-v_{5}-v_{3}-v_{6}-v_{2}-v_{4}-v_{1}
$$

From class notes, if G is connected, and k-regular of order n, where n is odd, then $X^{\prime}(G)=\Delta(G)+1=k+1$.

Prove G is not planar. Assume it is.
Then $m \leqslant 3 n-6$

$$
\begin{aligned}
& m=\frac{7(6)}{2}-7=14 \\
& 14 \leqslant 3(7)-6=15
\end{aligned}
$$

Then

$$
\begin{aligned}
n-m+f & =2 \\
7-14+f & =2 \\
f & =9
\end{aligned}
$$

Then $3 f \leqslant 2 m$

$$
\begin{aligned}
& 3(9)=27 \quad 27 \leqslant 28 \checkmark \\
& 2(14)=28
\end{aligned}
$$

Formulas are not enough to prove that G is not Planar. By Kuratowski's Theorem, G has a subgraph that is a subdivision of K_{5}. Thus it is not. planar.
has a subdivision of $k_{3,3}$

iv) Since G is planar, it must satisfy:

$$
\begin{gather*}
n-m+f=2 \\
11-m+f=2 \\
m-f=9 \\
f=m-9 \tag{1}\\
k f \leqslant 2 m \\
6 f \leqslant 2 m \\
f \leqslant \frac{1}{3} m \tag{2}
\end{gather*}
$$

Substitute (1) into (2)
So we choose

$$
\begin{gathered}
m-9 \leqslant \frac{1}{3} m \\
3 m-27 \leqslant m \\
2 m \leqslant 27 \\
m \leqslant 13.5 \approx 14
\end{gathered}
$$

But since G is connected, m cannot be less than 10. Note m cannot be 10 , since trees have no cycles, but it is given that girth $(G)=6$.
v)

b) Eulerian: No.

Semi-Eulerian: Yes.
Example of Trail:

$$
\begin{aligned}
& V_{1}-V_{6}-V_{5}-V_{4}-V_{3}-V_{2}-v_{1}-V_{5}-V_{2}-V_{4}-V_{1} \\
& -V_{3}-V_{6}-V_{4}
\end{aligned}
$$

c) Maximum Matching:

$$
M=\left\{v_{1}-v_{6}, v_{2}-v_{5}, v_{3}-v_{4}\right\}
$$

It is a Perfect Matching.

Minimum Edge Cover:

$$
E_{c}=\left\{v_{1}-v_{6}, v_{2}-v_{5}, v_{3}-v_{4}\right\}
$$

Since M is a perfect matching, then $M=E c$.

$$
x^{\prime}(6)=5
$$

e) $m=\frac{6(6-1)}{2}-2=13$

Size of $L(G)=\frac{d_{1}^{2}+d_{2}{ }^{2}+\cdots d_{n}{ }^{2}-2 m}{2}$

$$
=\frac{2 \cdot 5^{2}+4 \cdot 4^{2}-2(13)}{2}=44
$$

Let w be a vertex in $L(G)$ (so w is an edge in G). By (lass notes, $\operatorname{deg}(W)$:

$$
\operatorname{deg}(\omega)=\operatorname{deg}(a)+\operatorname{deg}(b)-2,
$$

Let w be $v_{1}-v_{4}$. So:

$$
\begin{aligned}
\operatorname{deg}(w) & =\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{4}\right)-2 \\
& =5+5-2=8
\end{aligned}
$$

vi)

Let G be a connected k-regular of order n and size m . Hence sum of all degrees $=2 \mathrm{~m}$. Thus $\mathrm{kn} / 2=\mathrm{m}$

Since G is planar, $m<=3 n-6$.
Hence kn/2 <= 3n-6, and thus kn <= 6n-12.
Hence (k n-6n) <= 12, i.e., (k-6)n <= -12
Since $n>0$, by staring at $(k-6) n<=-12$, we conclude that $k-6<0$. Thus
$2<=k<6$

When V_{9} is removed, G becomes C_{8} which is Hamiltonian.
viii)

CI
Petersen graph (class notes) is 3-regular of order 10 and the chromatic index of Petersen $=$ Delta $($ max. Degree $)+1=3+1=4$
ix)

$$
k_{3,2}
$$

Adjacency Matrix of $L\left(k_{3,2}\right)$:

$$
\begin{aligned}
& e_{1} e_{2} \\
& e_{3}
\end{aligned} e_{4}^{4} e_{5} e_{6}, ~ \begin{aligned}
& e_{1} \\
& e_{2} \\
& e_{3} \\
& e_{4} \\
& e_{5} \\
& e_{6}
\end{aligned}\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

Order: 6 Size: 9

Is $L\left(K_{3,2}\right)$ Planar?

$$
\begin{array}{ll}
n=6 & \text { is } \\
m=9 & m n-6 ? \\
& 9 \leqslant 12 \\
n-m+f=2 & \\
6-9+f=2 & \text { is } 3 f \leqslant 2 m ? \\
f=5 & 3(5)=15 \\
2(9)=18 \\
& 15 \leqslant 18
\end{array}
$$

Formulas are not enough to prove that $L\left(k_{3,2}\right)$ is planar. By Kuratowski's Theorem, $L\left(K_{3,2}\right)$ cannot have a subgraph that is a subdivision of M $k_{3,3}$ or K_{5}. Thus it is planar

Q1 (IX), we show by drawing $L\left(K_{3}, 2\right)$ is planan

$$
\begin{aligned}
& 1-4: e_{1} \\
& 1-5: e_{2} \\
& 2-4: e_{3} \\
& 2-5: e_{4} \\
& 3-4: e_{5} \\
& 3-5
\end{aligned}: e_{6}
$$

notedeg(each vertex) in $L\left(k_{3}, 2\right)$ is

(1)

V	A	B	C	D	E	F	G
A	0	4_{A}	7_{A}	∞	∞	∞	∞
B	-	4_{A}	5_{B}	7_{B}	14_{B}	∞	∞
C	-	-	5_{B}	7_{B}	14_{B}	10_{C}	∞
D	-	-	-	7_{B}	12_{D}	8_{D}	∞
F					11_{F}	$8 D$	17_{F}
E					11		15_{E}
G							15_{E}

tree:-

GRAPH THEORY FINAL
Qi) $n=6, m=m . \quad G=H_{1} \oplus H_{1} \oplus H_{3}, H_{n} \rightarrow 1$ fates.
i) $k=3 \rightarrow$

Sing Each 1 factor adds one degree to each vertex, and the are 3 on factors, degree of each vertex must be 3 .

iii) ${ }^{v_{2}^{2}}$ Since none of the edges cross each other, by definition, G is planar.
iv) Max independent set $\rightarrow\left\{V_{3}, V_{6}\right\} . \alpha(G)=2$
v) Min Vertex cover $\left.\rightarrow\left\{V_{1}, V_{3}, V_{5}, V_{6}\right\} \beta(G)=4\right\} 2+4=6=n$
vi) $M_{\text {in }} \operatorname{Dom}$ set $\rightarrow\left\{V_{1}, V_{2}, v_{6}\right\} \quad \gamma(G)=3\left\{V_{2}, V_{4}\right\} \quad \gamma(G)=2$.
$\left.\begin{array}{l}\text { vii) Max matching } \rightarrow\left\{V_{1}-V_{4}, v_{2}-V_{3} m V_{5}-V_{6}\right\} \quad m(G)=3 . \\ V_{\text {iii) }} \text { Min Edge Cover } \rightarrow\left\{V_{1}-V_{2}, V_{3}-V_{4}, V_{5}-V_{6}\right\} \quad \beta_{e}(G)=3\end{array}\right\} 3+3=6=n$.
$\left.{ }^{i x}\right) X(G)=43$
X) $X^{\prime}(G)=4 \rightarrow$ Vreneler where $k:+11 \rightarrow X^{\prime}(q)=\Delta(a)+1$
$x_{i} C_{6}$ is a Suberaph of G, implying, by definition, G is Hamiltonian $\rightarrow V_{1}-V_{2}-V_{6}-V_{5}-V_{3}-V_{4}-V_{1}$
$X_{\text {(ii) }} W_{1} \int_{v_{3}}^{v_{2}} \frac{W_{2}:}{2 \text {-factor }}$
1 -Factor

$x_{\text {iii) }} Y_{\&}$, D con be $K_{3,3}$, which mule know is not planar by Kuratowski's Therm. $K_{3,3}$ has $6=3+3$ vertios, $k_{3,3}$ is 3 regular, and has 9 edges, just as in part (i) \& (ii). Hone it is possible that D is non-draar Xiv) Let ω be an edge of $G($ vertex in $L(G))$. We Know by class result, $\operatorname{deg}(\omega)=\operatorname{dy}(a)+\operatorname{dyg}(b)-2$, where $\omega=a-b$ a) in G. Since G is 3 regular, dy $(a)=3 \forall a \in V_{G}$. Hance, dy $(\omega)=3+3-2=4$. Since ω was chose randomly, we conclude $\operatorname{dy}(e)=4 \forall e \in V_{L(G)}$, Hence $L(G)$ is 4 -regular.
b) Ghat order n, size m, hence L (a) has order m, size $=\frac{d_{1}^{2}+d_{2}^{2}+\cdots+d_{b}^{2}-2 m}{2}$

We sue, $L(4)$ has order 9 has size $==\left(6(3)^{n} 2-18\right) / 2=18$
9) $x^{\text {iv) }}$ c) Since G is 3 regular, every vertex in G has 3 edged incident on it. This would cause the line graph to have an add cycle, since any 3 vertices connected to a vertex $V \in G$, wowed cause the edges to be connected in $L(G)$.
多: Consider a part of our graph G :

in $L(G)$, we would have

This would aluengs lead to a cycle length 3 (oddaycle) in L(G), implying L(G) is NOT bipartite by construction.
d) $L(G)$ IS Eulerian, Since $L(G)$ is 4 -regular, $\Leftrightarrow \operatorname{deg}(V)=4 \quad \forall V \in V_{L G}$, ie know by class result, that $L(G)$ is Eulerian, since deg (V) is seven $\forall v \in V$.
P2) I Claim that $G=C_{n}$. Since $\sum_{V \in V} \operatorname{deg}(v)=2|E|$, and we know $|E|=|V|=n$, we have $2 E$ $\sum_{v \in V} \operatorname{drg}(V)=n \cdot \operatorname{deg}(v)=2|E|=2 n \Rightarrow \operatorname{deg}(v) \cdot n=2 n \Rightarrow \operatorname{deg}(V)=2 \quad \forall V \in V$. Hate Moreover, only C_{n} has the property that Size $=$ order. Sine Size $=$ order, and $d y(v)=2 \forall v \in V$, we can $\operatorname{con}^{\prime} c$ aude $G=G_{n}$, Sink. C_{n} is exactly one cycle, G has exactly one cycle.
Q2) Assume Ghat no cycles, then by definition, G is a tree. But we Know, for any tree, the size is n-1 if the order is n. Contradiction! Hence G must have a Cycle.
To show it is exactly one cycle, let use consider a true of order n, size $n-1$. If ale correct any 2 vertices existing vertices in the tree by an edge, we would have a graph with order $=\operatorname{size}=n$. In the process, we created exactly one cycle, since wee added only 1 vertex edge.
TH Moreover, Since all trees are connected by definition, G is connected. Therefore, if G has size $=\operatorname{order}=n$, then G has exactly one cycle $[$ and $G-v$ for some $v \in V$ is a tree].

Q4) We fird a sulgraph of G suthat that is a sub division of $K_{3,3}$. Hence, by Kurut owsKis theorm, $G_{i \text { is }}$ the grugh is not planar.x

This is clarly a subdivsion of $K_{3,3}$, and is clesily a subegriphof G (G is aluaps a subyeraph of itself), tlence, G is not plamar.

Q5)

	A	B	C	D	E
A	σ_{A}	σ_{A}	∞	I_{A}	∞
D		$3 D$	∞	I_{A}	$2 D$
E		3_{D}	7_{E}		$2 D$
B		$\sqrt{3 D}$	7_{E}		
C			7_{E}		

Spanning Tree:

1 Section 5: Assessment Tools (unanswered)

Home Work I , MTH 418, Fall 2021

Ayman Badawi

QUESTION 1. Stare at the following graph

(i) Find $d(1,6)$
(ii) Find $d(4,1)$
(iii) Is $1--4--5--3--6--2--1--3$ a path?
(iv) Find a cycle of length 4
(v) Is the graph a k-regular? if yes, find the value of k.

QUESTION 2. Can we construct a graph with the following degrees: $3,2,2,3,2,2$? If yes, then draw such graph. Is the graph connected? Complete?

QUESTION 3. Can we construct a graph with the following degrees: $3,1,1,3,3,3$? If yes, then draw it. Is the graph connected? Complete?

QUESTION 4. Let $V=Z_{8}=\{0,1,2,3,4,5,6,7\}$ be the set of all vertices of a graph G. Two vertices a, b in V are connected by an edge if and only if $a+b \in\{0,2,4,6\}$. Draw such graph? Is the graph connected? Is the graph complete? [Note from discrete math or abstract algebra $a+b \in Z_{8}$ means addition module 8 ; i.e., $4+5$ in Z_{8} is 1 , in a different language $1+8$ is the remainder when we divide 9 by 8 . Also $4+7$ is $3,4+7$ is the remainder when we divide 11 by 8 .]

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
1.1.2 HW II

Home Work II, MTH 418 , Fall 2021

Ayman Badawi

QUESTION 1. Stare at the following two matrices, A_{1} is an adjacency matrix of graph G_{1}, A_{2} is an adjacency matrix of graph G_{2}.

$$
A_{1}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right], A_{2}=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

(i) Label each vertex as $1,2,3,4,5$. Find the degree of each vertex of G_{1} and find the degree of each vertex of G_{2}.
(ii) Draw graph G_{1} and G_{2}.
(iii) I claim that $G_{1} \approx G_{2}$ so construct an isomorphic-map from G_{1} onto G_{2}
(iv) Is G_{1} or G_{2} a $K_{m, n}$ for some positive integers m, n ? If yes, then draw it.
(v) Find a permutation matrix P such that $P A_{1}=A_{2} P$.
(vi) In words, describe how we get A_{2} from A_{1} (i.e., by switching rows and column of A_{1})

QUESTION 2. Let $V=\{3,5,6,9,10,12\}$ be the set of vertices of a graph G. Two vertices $a, b \in V$ are connected by an edge if and only $a \cdot b=0$ in Z_{15} (i.e., multiplication here is module 15 . For example: $3 \cdot 12=6$ in Z_{15}, we multiply 3 by 12 then we take the remainder when divided 36 by 15)

1) Convince me that G is a $K_{m, n}$ for some positive integers m, n.
2) Find the girth of G.
3) Find the diameter of G.
4) Construct a minimum dominating set D and find the dominating number of G.

QUESTION 3. Let $V=\{2,3,4,6,8,9,10\}$ be the set of vertices of a graph G. Two vertices $a, b \in V$ are connected by an edge if and only $a \cdot b=0$ in Z_{12} (i.e., multiplication here is module 12 . For example: $3 \cdot 10=6$ in Z_{12}, we multiply 3 by 10 then we take the remainder when divided 30 by 12)

1) Convince me that G is not a $K_{m, n}$.
2) Find the girth of G.
3) Find the diameter of G.
4) Construct a minimum dominating set D and find the dominating number of G.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

1.1.3 HW III

Home Work III , MTH 418, Fall 2021,

Ayman Badawi

Submit HW III in the Submit HW folder by March 18, 11:59pm

QUESTION 1. Let $G(V, E)$ be a connected graph of order n. Convince me that the size of G is $\geq n-1$.
QUESTION 2. Let T be a tree of order 13. The degrees of the vertices of T are 1, 2, and 5. If T has exactly three vertices of degree 2 , how many end-vertices does it have?

QUESTION 3. Construct a minimum dominating set of C_{14} and P_{10}.
QUESTION 4. Consider the graph G below

QUESTION 5. Let G be a connected graph and e be an edge that is a bridge. Convince me that e is an edge of every spanning tree of G.

QUESTION 6. Consider the graph G below

Find all cut-vertices of G
Find all bridges of G
By staring find Diam(G)
Draw the complement of G , is the complement of G connected? How many edges does the complement of G have?

${ }^{1.1 .4} \mathbf{H W}$ IV

Home Work IV , MTH 418 , Fall 2021,

Ayman Badawi

Submit HW IV in the Submit HW folder by April 15 (Thursday), 11:59pm
QUESTION 1. Let $G(V, E)$ be a simple graph of order n. and M be a maximum matching.
(i) Assume that M ie perfect matching. Prove that n is an even integer. Find $m(G)$. (briefly but to the point)
(ii) Assume that M is a perfect matching and G has no isolated vertices. Prove that M is a minimum edge-cover of G.(briefly but to the point)
(iii) Assume that G has no isolated vertices and let E_{c} be a minimum edge cover of G. Let V_{c} be the set of all vertices of the edges in E_{c} (note that $\left|V_{c}\right|=n=|V|$). Now it is clear that $H\left(V_{c}, E_{c}\right)$ is a spanning subgraph of G. Prove that H is bipartite. [not difficult, maximum 3 lines proof].
(iv) Let H as in (iii) and M_{c} be a maximum matching of H. Prove that M_{c} is a maximum matching of G (nice!) [hint : Note that $m(G)+\beta_{e}(G)=n$, so it must be at most 3 lines of proof, note that $\beta_{e}(G)=\left|E_{c}\right|$, where E_{c} is a minimum edge cover of G. So you learned that every minimum edge cover of a graph, G, must contain a maximum matching of G]

QUESTION 2. Give me an example of a connected graph G that is not a tree with the following two properties:
(i) G has a spanning tree T such that $m(T)=m(G)$ and hence $\beta_{e}(T)=\beta_{e}(G)$.
(ii) G has a spanning tree T such that $m(T) \neq m(G)$ and hence $\beta_{e}(T) \neq \beta_{e}(G)$. [Think, it should not be difficult . If you start wrong, then you might write pages, but if you think correctly, then you get G quickly.

QUESTION 3. (i) Let T be a tree of the form $B_{m, n}, m>n$. Find $m(T)$ and $\beta_{e}(T)$.
(ii) think without drawing but justify your claim BRIEFLY: The line graph of $K_{1, n}(n \geq 2)$ is isomorphic to a familiar graph G. What is G ?
(iii) Consider the following GRAPH G (by staring ONLY answer the following, no need for details):

a. Is G a bipartite? if yes, redraw it.
b. Find a maximum matching set and $m(G)$
c. Find a minimum edge-cover set and $\beta_{e}(G)$
d. Find Find a minimum vertex-cover set and $\beta(G)$
e. Find a maximum independent set of vertices and $\alpha(G)$
f. Find a minimum dominating set of vertices and $\gamma(G)$

QUESTION 4. Consider the following graph G of order n and size m :

(i) Draw $L(G)$, i.e., the line graph of G. Use the following labeling for the edges: $e_{1}=A-B, e_{2}=A-C$, $e_{3}=$ $A-D, e_{4}=D-E, e_{5}=D-F$. Note $L(G)$ is not a bipartite graph.
(ii) Find the incidence matrix $n \times m$ of G (as in class, rows $=$ number of vertices $=\mathrm{n}$, columns $=$ number of edges $=\mathrm{m}$), call such matrix N
(iii) Find the adjacency matrix of $L(G)$, call it H .
(iv) (Nice connection between N and H !): Use a software (if you want), find $L=N^{T} N-2 I_{m}$. Draw the graph, say F, that correspond to the matrix L. By staring (no need to justify). Is F is graph-isomorphic to $L(G)$. Conclusion (Nice): L is always an adjacency matrix of $L(G) /$ nice result].

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Exam One, MTH 418 , Fall 2021

Ayman Badawi

(Stop working at 7pm/ submit your solution by 7:14pm)

63

QUESTION 1. (15 points) Stare at the following Graph, say G.

(i) If the graph is a $B_{m, n}$ for some positive integers $m, n \geq 1$, then find m and n and redraw it as a bipartite graph. If the graph is not a bipartite, then explain.
(ii) Draw \bar{G} (the complement of G). If \bar{G} is not connected, then how many components does it have? draw each component
(iii) Find a maximum independent set of vertices of the graph G. What is $\alpha(G)$
(iv) Find a minimum vertex cover of G. Then find $\beta(G)$.
(v) Find a minimum dominating set of G that is not a minimum vertex cover of G. Then find $\gamma(G)$.

QUESTION 2. (15 points)

(i) Let T be a tree of order 10 such that the vertices have the following sequence of degrees: $3,1,1,1,1,1,3,5, x, y$. Find values of x, y. Show the work
(ii) Let G be a connected graph of order $n \geq 2$. Assume that T is a tree that is a spanning INDUCED subgraph of G. Prove that G is a bipartite graph. How many edges does G have?.
(iii) Assume that a a bipartite graph $B_{m, n}$ is r-regular for some integer $r \geq 1$ (i.e., all vertices are of degree r). Prove that $m=n$
(iv) Can we construct a a bipartite graph of order 7 such that the vertices have the following sequence of degrees: 3 , $2,2,1,3,2,3$? If yes, then draw such graph. Draw the girth of such graph (if it has a cycle)
(v) Can we construct a graph of order 7 such that the vertices have the following sequence of degrees: $3,4,3,1,6$, 5,6? Explain. If yes, then draw it
QUESTION 3. (12 points) Consider the following two graphs:

G_1

(i) Convince me that G_{1} is graph-isomorphic to G_{2} by constructing a graph-isomorphism $f: G_{1} \rightarrow G_{2}$.
(ii) Let A_{1} be the adjacency matrix of G_{1} and A_{2} be the adjacency matrix of G_{2}. Find A_{1} and A_{2}.
(iii) Find a permutation matrix P such that $P A_{1}=A_{2} P$.
(iv) STATE clearly the operations that you will perform on A_{1} in order to get A_{2} (Show the work as in HW 2)

QUESTION 4. ($\mathbf{1 5}$ points) Stare at the following graph (no need to justify or explain):

(i) Find a minimum dominating set of the graph, say G. Then find $\gamma(G)$
(ii) Find $\alpha(G)$ (i.e., the cardinality of a maximum independent set of vertices). Then find a maximum independent set of vertices
(iii) Find $\operatorname{diam}(G)$
(iv) Find all vertex-cut (i.e., cut-vertices) of G.
(v) Find all bridges of G

QUESTION 5. (6 points) Consider the 4-cube graph, Q_{4}
(i) Find $d(0101,1001)$. Then construct a shortest path between 0101 and 1001
(ii) Find girth $\left(Q_{4}\right)$, then construct such cycle.
$\stackrel{292}{1.2 .2}$ Exam II
TABLE OF CONTENTS

辟

Exam Two, MTH 418, Fall 2021

Ayman Badawi

(Stop working at 11:00 pm/submit your solution by 11:10 pm) 57
QUESTION 1. (i) (4 points) Let $C_{6}: 1-2-3-4-5-6-1$ be a cycle in K_{6} and $G=K_{6}-\{1-2,2-3,3-$ $4,4-5,5-6,6-1\}$. Then G is of order 6 and size 9 . Is G a planar? if yes, then draw G. If not, then explain clearly (brief to the point)
(ii) ($\mathbf{3}$ points) Let G be the graph as in (i). Convince me that G is Hamiltonian by constructing a cycle of length 6 in G.
(iii) (6 points) Let $C_{7}: 1-2-3-4-5-6-7-1$ be a cycle in K_{7} and $G=K_{7}-\{1-2,2-3,3-4,4-5,5-$ $6,6-7,7-1\}$. Then G is of order 7 and size 14 . Find the chromatic index of G, i.e., $\chi^{\prime}(G)$. Explain briefly [hint: you do not need to sketch G]. Find the chromatic number of G, i.e., $\chi(G)$. [Hint: maybe it helps if you look at different C_{3} inside G]. Convince me that G is not planar.
(iv) (4 points) Let G be a connected planar graph of order 11 and girth 6 . Let m be the size of G. Find all possibilities of m.
(v) Let G be a connected graph of order 6 such that the vertices have the following degrees 5, 5, 4, 4, 4, 4
a. (3 points) Draw such graph . [Hint: One way, draw two parallel P_{3}, then now, I think, it is clear how to finish the drawing]
b. (3 points) Is G Eulerian or Semi-Eulerian (Eulerian trail)? if Eulerian, then construct such circuit. If semi-Eulerian, then construct such trail.
c. (3 points) Find a maximum matching of G and find a minimum edge-cover of G.
d. (4 points) Find the chromatic number of G, i.e., $\chi(G)$ and find the chromatic index of G, i.e., $\chi^{\prime}(G)$.
e. (6 points) Find the size of $L(G)$. What is the maximum degree Δ of $L(G)$?. Find $\chi(L(G))$.
(vi) (3 points) Let G be a connected PLANAR k-regular graph. Prove that $2 \leq k \leq 5$, i.e., all k-regular connected graphs with $k \geq 6$ are non-planar.
(vii) ($\mathbf{3}$ points) give me an example of a connected graph of order 9 that is a Hamiltonian path but not Hamiltonian, and it has a vertex v such that $G-v$ is a connected Hamiltonian graph.
(viii) (3 points) give me an example of a connected regular graph G with an even number of vertices such that $\chi^{\prime}(G)=\Delta+1$, where Δ is the maximum degree of G.
(ix) (6 points) Find the adjacency matrix of $G=L\left(K_{3,2}\right)$. Find the order and the size of G. Is G a planar? explain.
(x) (6 points) Consider the following weighted graph. Use Dijkstra's Algorithm (as explained in class-notes) to find a spanning tree such that between every two vertices there is a path of minimum weight.[Please start from vertex A]. Then Sketch such tree.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

1.2.3 Final Exam

\qquad

Final Exam, MTH 418 , Fall 2021

Ayman Badawi

(Stop working at 1pm/submit your solution by 1:12pm) 47

QUESTION 1. (34 points)

Let $G(V, E)$ be a connected graph of order 6 and size m such that $G=H_{1} \oplus H_{2} \oplus H_{3}$, where each H_{i} is a 1-factor subgraph of G.
(i) Convince me that G is a k-regular graph for some positive integer k. Find the value of k.
(ii) Find m
(iii) By drawing, convince me that such graph can be a planar (Hint: Think about two triangles one inside the other).
(iv) By staring at the graph that you draw in (iii), find a maximum independent set of vertices of G. (no need for justification)
(v) By staring at the graph that you draw in (iii), find a minimum vertex-cover set of G. (no need for justification)
(vi) By staring at the graph that you draw in (iii), find a minimum dominating set of G. (no need for justification)
(vii) By staring at the graph that you draw in (iii), find a maximum matching set of edges of G. (no need for justification)
(viii) By staring at the graph that you draw in (iii), find a minimum edge-cover set of G. (no need for justification)
(ix) By staring at the graph that you draw in (iii), find $\chi(G)$.(no need for justification)
(x) By staring at the graph that you draw in (iii), find $\chi^{\prime}(G)$.(no need for justification)
(xi) By staring at the graph that you draw in (iii), convince me that G is Hamiltonian.
(xii) By staring at the graph that you draw in (iii), by drawing W_{1} and W_{2}, convince me that $G=W_{1} \oplus W_{2}$, where W_{1} is a 1-factor of G and W_{2} is a 2-factor of G.
(xiii) Let D be a connected k-regular graph of order 6 and size m, where k and m as in (i), (ii). Is it possible that D be a non-planar?If yes, then justify by an example. If no, then prove your claim.
(xiv) Let $L(G)$ be the line graph of G as in (iii).
a. Convince me that $L(G)$ is a k-regular graph for some positive integer K. Find the value of k.
b. Find the size of $L(G)$.
c. Convince me that $L(G)$ is not a bipartite graph [hint: You do not need to draw $L(G)$]
d. Is $L(G)$ an Eulerian? why?

QUESTION 2. ($\mathbf{3}$ points) Let G be a connected graph of order n and of size $n(n \geq 3)$. Prove that G has exactly one cycle.

QUESTION 3. (3 points) Let $T(V, E)$ be a tree of order $n \geq 4, S=\{v \in V \mid \operatorname{deg}(v) \geq 3\}$, $H=\{v \in V \mid$ $\operatorname{deg}(v)=1\}, K=|S|$ and $L=|H|$ (i.e., K is the number of vertices of T where each vertex is of degree ≥ 3 and L is the number of vertices of T where each vertex is of degree 1 . Prove that $L \geq K+2$.

QUESTION 4. (3 points) Show that the below connected graph is not a planar. [Hint: One way, stare at the red vertices and some how construct a subgraph that is a subdivision of $K_{3,3}$]

QUESTION 5. (4 points) Consider the following weighted graph. Use Dijkstra's Algorithm (as explained in classnotes) to find a spanning tree such that between every two vertices there is a path of minimum weight.[Please start from vertex A]. Then Sketch such tree.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Faculty information

Ayman Badawi, American University of Sharjah, UAE.
E-mail: abadawi@aus.edu

